tìm số nguyên n:
a) n+2 chia hết n-3
(n+4).(n-1)<0
(n+3)(n-2) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
Tìm số nguyên n để n - 4 chia hết cho n - 1
Ta có : n - 4 chia hết cho n - 1
=> n - 1 - 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 \(\in\)Ư(3) = {+1;+3}
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 3 => n = 4
Với n - 1 = -3 => -2
Vậy n \(\in\) {2;0;4;-2}
Mik làm câu a) cho nhoa :)
a) n -1 \(⋮\) n
=> -1 \(⋮\)n
=> n \(\in\)Ư ( -1 ) = { 1 ; -1 }
Vậy : ...
Học tốt nha bn!
Câu a) dễ rồi bạn tự làm nha :3
\(b)\) Ta có :
\(\left|n-1\right|< 2\)
Mà \(\left|x-1\right|\ge0\)
\(\Rightarrow\)\(\left|x-1\right|\in\left\{0;1\right\}\)
\(\Rightarrow\)\(\hept{\begin{cases}x-1=0\\x-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x\in\left\{1;2\right\}\)
\(c)\) \(\left|3-n\right|+\left|n+7\right|\)
Vì \(\left|3-n\right|\ge0;\left|n+7\right|\ge0\)
\(\Rightarrow\)\(\orbr{\begin{cases}3-n=0\\n+7=0\end{cases}\Rightarrow\orbr{\begin{cases}n=3\\n=-7\end{cases}}}\)
Vậy \(n\in\left\{3;-7\right\}\)
3x+12=2x-4
3x-2x=-4-12
1x=-16
x=-16:1 =>x=-16
14-3x=x+4
-3x-x=4-14
-4x=-10
x=-10:-4 =>x=-10/-4
2(x-2)+7=x-25
2x-4+7=x-25
2x-x=-25+4-7
2x=-28
x=-28;2 =>x=-14
|a+3|=-3
a+3=-3 hoặc a+3=3
a=-6 hoặc a=0
tìm x thì dễ rồi , mình làm tìm n nhá
a, ta có n+5=n-1+6
mà n-1 chia hết cho n-1
suy ra để n là số nguyên thì 6 chia hết cho n
suy ra n là ước của 6 ={
±1;
|
a: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
b: (n+4)(n-1)<0
=>n+4>0 và n-1<0
=>-4<n<1
c: (n+3)(n-2)>0
=>n-2>0 hoặc n+3<0
=>n>2 hoặc n<-3