Cho đường tròn (O),các bán kính OM,ON.Trên cung nhỏ MN lấy các điểm A và B sao cho AM=BN.Gọi C là giao điểm của các đường thẳng AM và BN.Chứng minh rằng:
a)OC là tia phân giác của góc MON
b)OC vuông góc với MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đường tròn tâm (O) có AM=BN
Từ đó ta suy ra OE=OD (tính chất quan hệ giữa đường kính và dây cung)
Xét tam giác vuông AOD và tam giác vuông BOE có:
OA=OB(cùng bằng bán kính)
OE=OD(chứng minh trên)
=> ΔAOD = ΔBOE (cạnh huyền-cạnh góc vuông)
=> ∠O1 = ∠O4 (2 góc tương ứng)(1)
Tương tự ta có: ∠O2 = ∠O3 (2)
Ta có: ∠AOC = ∠O1 + ∠O2
∠BOC = ∠O3 + ∠O4
Từ (1) và (2) ta suy ra ∠AOC= ∠BOC
Suy ra OC là tia phân giác của góc AOB.
Xét tam giác OBF và tam giác OAF có:
∠AOC = ∠BOC (chứng minh trên)
OA=OB
OF: chung
Suy ra ΔOBF = ΔOAF (c-g-c)
=> BF=AF( 2 cạnh tương ứng)
=> OC ⊥ AB
a. Kẻ \(OH\perp AM ; OK\perp AN\)
Ta có: AM = AN ( gt )
Suy ra: OH = OK ( hai dây bằng nhau cách đều tâm )
Xét hai tam giác OCH và OCK, ta có :
\(\widehat{OHC}=\widehat{OKC}=90^o\)
OC chung
OH = OK (chứng minh trên)
Suy ra: \(\Delta OIH=\Delta OIK\)( cạnh huyền, cạnh góc vuông )
Xét hai tam giác OAH và OBH, ta có :
\(\widehat{OHA}=\widehat{OHB}=90^o\)
OA = OB
OH = OK (chứng minh trên)
Suy ra: \(\Delta OAH=\Delta OBH\)( cạnh huyền, cạnh góc vuông )
\(\widehat{O_3}=\widehat{O_4}\)
Suy ra : \(\widehat{O_1}+\widehat{O_3}=\widehat{O_2}+\widehat{O_4}\)hay \(\widehat{AOC}=\widehat{BOC}\)
Vậy OC là tia phân giác của \(\widehat{AOB}\)
b. Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân )
Suy ra: \(OC\perp AB\)
Kẻ OH ⊥ AM, OK ⊥ AN
Ta có: AM = AN (gt)
Suy ra: OH = OK (hai dây bằng nhau cách đều tâm)
Xét hai tam giác OCH và OCK, ta có:
OC chung
OH = OK (chứng minh trên)
Suy ra: ∆ OIH = ∆ OIK (cạnh huyền, cạnh góc vuông)
Xét hai tam giác OAH và OBH, ta có:
OA = OB
OH = OK (chứng minh trên)
Suy ra: ∆ OAH = ∆ OBH (cạnh huyền, cạnh góc vuông)
Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao (tính chất tam giác cân)
Suy ra: OC ⊥ AB
a) Kẻ OP ⊥ AM, OQ ⊥ BN
Ta có: AM = BN (Giả thiết)
Suy ra: OP = OQ (hai dây bằng nhau cách đều tâm)
Xét hai tam giác OCP và OCQ, ta có:
Góc OPC= góc OQC=90∘
OC chung
OP = OQ (chứng minh trên)
Suy ra: ∆OCP = ∆OCQ (cạnh huyền, cạnh góc vuông)
Góc O1= góc O2
Xét hai tam giác OAP và OBQ, ta có:
Góc OPA= góc OQB=90∘
OA = OB
OP = OQ ( chứng minh trên)
Suy ra: ∆OAP = ∆OBQ (cạnh huyền, cạnh góc vuông)
Góc O3= Góc O4
Suy ra: Góc O1+góc O3= Góc O2+ góc O4 hay Góc AOC= Góc BOC
Vậy OC là tia phân giác của Góc AOB
b) Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân).
Suy ra: OC ⊥ AB.