K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

1)

a) \(x^2+12x+36=\left(x+6\right)^2\)

b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

Tick nha

21 tháng 7 2017

3)

a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=15-8\)

\(\Leftrightarrow-2x=7\)

\(\Rightarrow x=\dfrac{-7}{2}\)

b) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2\right)-5x+1=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3-10x^2+2x+4x^2-5x+1=28\)

\(\Leftrightarrow0-3x^2+23x+28=28\)

\(\Leftrightarrow-3x^2+23x=0\)

\(\Leftrightarrow-x\left(3x-23\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-23=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{3}\end{matrix}\right.\)

c) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6-2x^4-2x^2-1=0\)

\(\Leftrightarrow-5x^4+x^2-2=0\)

Đặt \(-5t^2+t-2=0\)

\(\Delta=1^2-4\left(-5\right)\left(-2\right)=-39< 0\)

\(\Rightarrow PTVN\)

12 tháng 11 2023

\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)

\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)

\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)

\(=10x^2+16x+50\)

 

13 tháng 11 2023

dưới dạng tổng các bình phương mà

28 tháng 6 2016

1)  2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2

2)

a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2

b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)

=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)

=(x-y+z+y-z)2

=x2

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

9 tháng 10 2021

a) \(\sqrt{36\left(x-5\right)^2}\left(x\ge5\right)=6\left|x-5\right|=6\left(x-5\right)=6x-30\)

b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\left(x>1\right)=\dfrac{1}{2}\left|1-x\right|=\dfrac{1}{2}\left(x-1\right)=\dfrac{1}{2}x-\dfrac{1}{2}\)

c) \(\sqrt{x^2\left(2x-4\right)^2}\left(x\ge2\right)=\left|x\left(2x-4\right)\right|=x\left(2x-4\right)=2x^2-4x\)

d) \(\dfrac{1}{x}\sqrt{x^2\left(1+x\right)^2}\left(x< -1\right)=\dfrac{1}{x}\left|x\left(1+x\right)\right|=\dfrac{1}{x}x\left(1+x\right)=1+x\)

19 tháng 11 2023

a: \(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\)

\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{x^4+2x^2+1-x^2}-\dfrac{x^2+3}{x^2\left(x-1\right)+3\left(x-1\right)}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x^2-x+1\right)}{\left(x^2+1\right)^2-x^2}-\dfrac{x^2+3}{\left(x-1\right)\left(x^2+3\right)}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{\left(x^2+1+x\right)\left(x^2+1-x\right)}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x^2+x+1}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)

\(=\dfrac{2x^2+3+x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{1}\)

\(=\dfrac{x^2+1}{x^2+x+1}\)

b: Để A là số nguyên thì \(x^2+1⋮x^2+x+1\)

=>\(x^2+x+1-x⋮x^2+x+1\)

=>\(x⋮x^2+x+1\)

=>\(x^2+x⋮x^2+x+1\)

=>\(x^2+x+1-1⋮x^2+x+1\)

=>\(-1⋮x^2+x+1\)

=>\(x^2+x+1\in\left\{1;-1\right\}\)

=>\(x^2+x+1=1\)

=>x2+x=0

=>x(x+1)=0

=>\(x\in\left\{0;-1\right\}\)

 

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)

\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\cdot\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\)

=2

b) Ta có: \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{x^2}\)