K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f: \(x^2y^2+2xy+1=\left(xy+1\right)^2\)

g: \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1=\left(3x-2y+1\right)^2\)

h: \(\left(x-3y\right)^2-8\left(x-3y\right)+16=\left(x-3y-4\right)^2\)

i: \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2=4x^2\)

6 tháng 6 2017

\(a,\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3x^2\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=\left(x-2y\right)^2\)

17 tháng 6 2017

a) \(\left(x+y\right)^2+\left(x-y\right)^2\)

=\(\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)

=\(x^2+2xy+y^2+x^2-2xy+y^2\)

\(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left[\left(x-y\right)+\left(x+y\right)\right]^2\)

= \(\left(x-y+x+y\right)^2\)

\(=2x^2\)

c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2\)

\(=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)

= \(\left(x-y+z-z+y\right)^2=x^2\)

27 tháng 7 2016

ngu the

27 tháng 7 2016

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=x^2+y^2+z^2-2xy-2yz+2xz+z^2-2yz+y^2+\left(2y-2z\right)\left(x-y+z\right)\)

\(=x^2+y^2+z^2-2xy-2yz+2xz+z^2-2yz+y^2+2xy-2y^2+2yz-2xz+2yz-2z^2\)

\(=x^2\)

7 tháng 9 2020

\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(\left[\left(x+y-z\right)-\left(x+y\right)\right]^2=z^2\)

7 tháng 9 2020

\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z-x+y\right)^2\)

\(=-z^2\)

2 tháng 9 2017

a ) ( x + y )2 +( x - y )2 = x2 + 2xy +y2 + x2 - 2xy + y2

= 2x2 + 2y2

b ) 2 . ( x - y ) . ( x + y ) + ( x + y )2 + ( x - y )2

= 2 . ( x2 - y2 ) + x2 + 2xy + y2 + x2 - 2xy + y2

= 2x2 - 2y2 + x2 +2xy + y2 + x2 - 2xy + y2

= 4x2

c ) ( x - y + z )2 - ( z - y )2 + 2.( x - y + z ) ( y - z )

= x2 + y2 + z2 - 2xy + 2 xz - 2yz - z2 + 2zy - y2 + 2xy - y2 + 2yz -2xz + 2y2 - 2z2

= x2

20 tháng 7 2017

1, đa thức đã cho \(\Leftrightarrow\left(2x-y\right)^2-2\left(2x-y\right)\left(x-y\right)+\left(x-y\right)^2=\left[\left(2x-y\right)-\left(x-y\right)\right]^2=\left(2x-y-x+y\right)^2=x^2\)

2, đa thức đã cho \(\Leftrightarrow\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

--- giải chi tiết lắm rồi đó---

20 tháng 7 2017

a, \(\left(2x-y\right)^2+2\left(2x-y\right)\left(y-x\right)+\left(x-y\right)^2\)

\(=4x^2-4xy+y^2+2\left(2xy-2x^2-y^2+xy\right)+x^2-2xy+y^2\)

\(=4x^2-4xy+y^2+4xy-4x^2-2y^2+2xy+x^2-2xy+y^2\)

\(=x^2\)

b, \(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left[1+2\left(y-z\right)\right]+y^2-2yz+z^2\)

\(=\left(x-y+z\right)\left(1+2y-2z\right)+y^2-2yz+z^2\)

\(=x+2xy-2xz-y-2y^2+2yz+z+2yz-2z^2+y^2-2yz+z^2\)

\(=x-y+z+2xy-2xz+2yz-y^2-z^2\)

Chúc bạn học tốt!!!