Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\). Tính\(\dfrac{a^{20}.b^{11}.c^{2011}}{d^{2042}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+b}{c+d}\\ \Leftrightarrow\left(\dfrac{a}{b}\right)^{2011}=\left(\dfrac{c}{d}\right)^{2011}=\left(\dfrac{a+b}{c+d}\right)^{2011}\\ \Leftrightarrow\dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\dfrac{\left(a+b\right)^{2011}}{\left(c+d\right)^{2011}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\dfrac{\left(a+b\right)^{2011}}{\left(c+d\right)^{2011}}=\dfrac{a^{2011}+c^{2011}}{b^{2011}+d^{2011}}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\left(\dfrac{a+c}{b+d}\right)^{2011}\\ \dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\dfrac{a^{2011}+c^{2011}}{b^{2011}+d^{2011}}\\ \Rightarrow\dfrac{a^{2011}+c^{2011}}{b^{2011}+d^{2011}}=\left(\dfrac{a+c}{b+d}\right)^{2011}\)
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}b+c+d=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=2a\\a+b+c+d=2b\\a+b+c+d=2c\\a+b+c+d=2d\end{matrix}\right.\\ \Rightarrow2a=2b=2c=2d\\ \Rightarrow a=b=c=d\\ \Rightarrow A=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)
\(TH1:a+b+c+d\ne0\)
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(=1+1+1+1\)
\(=4\)
\(TH2:a+b+c+d=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(=-\dfrac{c+d}{c+d}-\dfrac{d+a}{d+a}-\dfrac{a+b}{a+b}-\dfrac{b+c}{b+c}\)
\(=-1-1-1-1\)
\(=-4\)
TH1: \(a+b+c+d\ne0\)
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow a=b=c=d\)
\(P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\Rightarrow P=1+1+1+1\)
\(\Rightarrow P=4\)
TH2: \(a+b+c+d=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\Rightarrow P=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(d+a\right)}{d+a}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}\)
\(\Rightarrow P=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(\Rightarrow P=-4\)
bn mình nền của bn là nôb team trưởng team là t gaming
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow\dfrac{a^{20}.b^{11}.c^{2011}}{d^{2042}}=\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)
Vậy ...
+, Xét \(a+b+c+d=0\) ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
\(\Rightarrow\left\{{}\begin{matrix}ac=b^2\\bd=c^2\\ac=d^2\end{matrix}\right.\Rightarrow a=b=c=d\)(1)
Thay (1) vào biểu thức cần tìm ta được:
\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(*)
+, Xét \(a+b+c+d\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)(2)
Thay (2) vào biểu thức cần tìm ta được:
\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(**)
Từ (*) và (**) suy ra \(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=1\)
Vậy............
Chúc bạn học tốt!!!