K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+b}{c+d}\\ \Leftrightarrow\left(\dfrac{a}{b}\right)^{2011}=\left(\dfrac{c}{d}\right)^{2011}=\left(\dfrac{a+b}{c+d}\right)^{2011}\\ \Leftrightarrow\dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\dfrac{\left(a+b\right)^{2011}}{\left(c+d\right)^{2011}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\dfrac{\left(a+b\right)^{2011}}{\left(c+d\right)^{2011}}=\dfrac{a^{2011}+c^{2011}}{b^{2011}+d^{2011}}\)

7 tháng 1 2018

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\left(\dfrac{a+c}{b+d}\right)^{2011}\\ \dfrac{a^{2011}}{b^{2011}}=\dfrac{c^{2011}}{d^{2011}}=\dfrac{a^{2011}+c^{2011}}{b^{2011}+d^{2011}}\\ \Rightarrow\dfrac{a^{2011}+c^{2011}}{b^{2011}+d^{2011}}=\left(\dfrac{a+c}{b+d}\right)^{2011}\)

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

21 tháng 3 2018

Ta có:\(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}=\dfrac{y^{2010}}{b^2}=\dfrac{z^{2010}}{c^2}=\dfrac{t^{2010}}{d^2}\)

\(\Rightarrow\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}=\dfrac{x^{2010}}{a^2}\)

\(\Rightarrow\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}=0\)

\(\Leftrightarrow3\cdot\dfrac{y^{2010}}{b^2}=0\)

\(\Leftrightarrow y^{2010}=0\)

\(\Leftrightarrow y=0\)

CMTT\(\Rightarrow x=z=t=0\)

\(\Rightarrow T=0\)

20 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow\dfrac{a^{20}.b^{11}.c^{2011}}{d^{2042}}=\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)

Vậy ...

20 tháng 7 2017

+, Xét \(a+b+c+d=0\) ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)

\(\Rightarrow\left\{{}\begin{matrix}ac=b^2\\bd=c^2\\ac=d^2\end{matrix}\right.\Rightarrow a=b=c=d\)(1)

Thay (1) vào biểu thức cần tìm ta được:
\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(*)

+, Xét \(a+b+c+d\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)(2)

Thay (2) vào biểu thức cần tìm ta được:

\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(**)

Từ (*) và (**) suy ra \(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=1\)

Vậy............

Chúc bạn học tốt!!!

11 tháng 4 2018

fix đề đi bạn

12 tháng 4 2018

Bn phải để 1 lúc thì nó mới hiện lên đc!!!!