chứng minh (x+12 )(x+20)(x+34) chia hết cho 3 với mọi x thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x+11\right)^2-16+15=\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)⋮\left(x+6\right)\)
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(\Rightarrow M=x^4+16x^3+86x^2+176x+120\)
\(\Rightarrow M=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(\Rightarrow M=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
Sau khi phân tích đa thức M thành nhân tử, ta thấy: M chứa thừa số x + 6 nên \(M⋮\left(x+6\right)\)
Vậy với mọi \(x\inℕ\)thì\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15⋮\left(x+6\right)\)
- Gỉa sử \(x^2+1\) chia hết cho 3 .
=> \(x^2+1\in B_{\left(3\right)}\)
=> \(x^2+1\in\left\{\pm3,\pm6,\pm9,\pm12,\pm15,....\right\}\)
=> \(x^2\in\left\{2,-4,5,-7,8,-10,....\right\}\)
Mà \(x\in N\) .
=> \(x^2\in\left\{2,5,8,11,14,...\right\}\)
=> \(x\in\left\{\sqrt{2},\sqrt{5},\sqrt{8},...\right\}\)
Mà \(x\in N\) .
=> \(x\in\left\{\varnothing\right\}\)
Vậy không tồn tại x để \(x^2+1\) chia hết cho 3 hay \(x^2+1\) không chia hết cho 3 với mọi \(x\in N\) .
- Xét làm 3 trường hợp:
+ Với x có dạng 3k thì: \(\left(3\left(k+4\right)\right)\left(3k+20\right)\left(3k+34\right)⋮3\)
Vì thừa số đầu chia hết cho 3;
+ Với x có dạng 3k+1 thì :
\(=>\left(3k+13\right)\left(3\left(k+7\right)\right)\left(3k+35\right)⋮3\)
Vì thừa số thứ 2 chia hết cho 3;
+Với x có dạng 3k+2 thì:
\(=>\left(3k+14\right)\left(3k+22\right)\left(3\left(k+12\right)\right)⋮3\)
Vì thừa số thứ 3 chia hết cho 3;
=> \(\left(x+12\right)\left(x+20\right)\left(x+34\right)⋮3\) với mọi x thuộc N;
CHÚC BẠN HỌC TỐT........
Đoàn Đức HiếuHồng Phúc NguyễnNguyễn Huy TúAkai HarumaAn Trịnh Hữu