5 Xác định các số nguyên n để ( n+2 ) : ( n-1 ) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
Xuân Tuấn Trịnh29 tháng 4 2017 lúc 9:10
a) Để A là phân số thì 5 không chia hết cho n-1 hay n-1 không phải Ư(5) mà Ư(5)={-5;-1;1;5}
Ta có bảng sau:
n−1≠n−1≠ | -5 | -1 | 1 | 5 |
n≠n≠ | -4 | 0 | 2 | 6 |
Vậy n≠{−4;0;2;6}≠{−4;0;2;6}thì A là phân số
n=0 => A=50−1=−550−1=−5
n=10 => A=510−1=59510−1=59
n=-2 => A=5−2−1=−535−2−1=−53
Để A là số nguyên =>5 chia hết cho n-1 <=>n-1 là Ư(5)
Từ bảng trên => n={-4;0;2;6} thì A nguyên
b) Do n là Số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp
=>n và n+1 nguyên tố cùng nhau
=>phân số nn+1nn+1tối giản(dpcm)
c)11⋅2+12⋅3+...+149⋅50=1−12+12−13+...+149−150=1−150<1(đpcm)
~hok tốt~
nn không thể là số lẻ vì khi đó có ít nhất 66 số chẵn >2>2 nên không thể là số nguyên tố. Dễ thấy với n=2n=2 số n+7=9n+7=9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n=4n=4 số n+5=9n+5=9 là hợp số. Với n=6n=6 dễ thấy cả 77 số đều là số nguyên tố.
Dễ thấy là trong 77 số đã cho có 11 số chia hết cho 77. Thật thế 77 số đã cho khi chia cho 77 có cùng số dư với 77 số n+1,n+5,n+7,n+6,n+3,n+4,n+2n+1,n+5,n+7,n+6,n+3,n+4,n+2 mà trong 77 số tự nhiên liên tiếp có 11 số chia hết cho 77.
⇒⇒ Với n≥8n≥8 trong 77 số đã cho có 11 số chia hết cho 77 và >7>7 nên là hợp số.
⇒⇒ Số duy nhất thỏa mãn là n=6n=6
Xem thêm tại đây nhé bạn : Tìm số n nguyên dương sao cho tất cả các số n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là số nguyên tố - Số học - Diễn đàn Toán học
Ta thấy: n phải là số chẵn vì trong dãy có phần dư của n là số lẻ (nếu là số lẻ thì các số trên chẵn ra hợp số)
Mà số nguyên tố chẵn duy nhất là 2 nên n = 2
Thay n = 2, ta có: n + 7 = 2 + 7 = 9 (loại vì là hợp số)
+) Với n = 4
Ta có: n + 5 = 4 + 5 = 9 (loại vì là hợp số)
+) Với n = 6
Với n = 6 thì tất cả các số trên đều là số nguyên tố (tm)
Theo nguyên lí Dirichle thì trong một phép chia cho 7 thì có nhiều nhất 6 số dư
Vậy ta dễ chứng minh để loại hết các số lớn hơn 6
Vậy n = 6 là nghiệm duy nhất cần tìm.
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
x-3 | -1 | -13 | 1 | 13 |
x | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
x-2 | -1 | -111 | -3 | -37 | 1 | 3 | 111 | 37 |
x | 1 | -99 | -1 | -39 | 3 | 5 | 113 | 39 |
Vậy n={1;-99;-1;-39;3;5;113;39}
Dể phân số \(\dfrac{7n-8}{2n-3}\) đạt giá trị lớn nhất thì :
\(2n-3\) đạt giá trị nhỏ nhất
Và phân số \(\dfrac{7n-8}{2n-3}\in Z\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n-3=0\Leftrightarrow n=\dfrac{2}{3}\left(loại\right)\\2n-3=1\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)
Thay \(n=2\) ta có :
\(\dfrac{7n-8}{2n-3}=\dfrac{7.2-8}{2.2-3}=6\)
Vậy giá trị lớn nhất của phân số \(\dfrac{7n-8}{2n-3}=6\) khi \(n=2\)
\(\)Đặt:
\(A=\dfrac{7n-8}{2n-3}\)
\(MAX_A\Rightarrow A\in Z^+\Rightarrow2n-3\in Z^+\)
\(MAX_A\Rightarrow MIN_{2n-3}\)
\(\Rightarrow2n-3=1\Rightarrow2n=1+3\Rightarrow2n=4\Rightarrow n=2\)
\(\Rightarrow MAX_A=\dfrac{2.7-8}{2.2-3}=6\)
Vậy \(MAX_A=6\) khi \(n=2\)
B2 : n=1
vì nếu lớn hơn 1 thì có 5soos chia hết cho 2 và ít nhất 1 số chia hết cho3 là số lẻ
nếu n=0 thì có 4soos nguyên tố
nhắn đúng cho mình nhé
Ta có: \(\left\{{}\begin{matrix}p+e+n=115\\p=e\\p+e-n=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n=90\\p=e\\p+e+n=115\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=45\\p=e=35\end{matrix}\right.\)
\(KHNT:^{80}_{35}Br\)
\(\left\{{}\begin{matrix}2p+n=115\\2p-n=25\end{matrix}\right.\)\(\left\{{}\begin{matrix}P=E=Z=35\\N=45\end{matrix}\right.\)
=> Nguyên tử R có 35p. 35e, 45n
b) Tên: Brom (KHHH: Br)
NTK=A=N+P=45+35=80(đ.v.C)
Vì \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
mà \(n-1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\inƯ\left(3\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{2;0;4;-2\right\}\)
Vậy \(n\in\left\{0;\pm2;4\right\}.\)
Để \(\dfrac{n+2}{n-1}\) nhận giá trị nguyên thì :
\(n+2\text{ }⋮\text{ }n-1\)
\(\Rightarrow n-\left(1+3\right)\text{ }⋮\text{ }n-1\)
\(\Rightarrow n-1+3\text{ }⋮\text{ }n-1\)
\(\Rightarrow\left(n-1\right)+3\text{ }⋮\text{ }n-1\)
Mà \(n-1\text{ }⋮\text{ }n-1\)
\(\Rightarrow3\text{ }⋮\text{ }n-1\)
\(\Rightarrow\left(n-1\right)\inƯ_{\left(3\right)}\)
\(\Rightarrow\left(n-1\right)\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{0;2;-2;4\right\}\)
Vậy \(\dfrac{n+2}{n-1}\) nhận giá trị nguyên khi \(n\in\left\{0;2;-2;4\right\}\)