K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:

-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)

- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)

Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;

=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)

Vậy phân số trên luôn tối giản;

CHÚC BẠN HỌC TỐT...

8 tháng 7 2017

Gọi \(d\)\(UCLN\left(7n+4;9n+5\right)\)

\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)

\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)

\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)

24 tháng 7 2023

Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản

\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)

\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)

\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)

\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))

\(\Rightarrow dpcm\)

24 tháng 7 2023

Chứng minh rằng với mọi số tự nhiên n thì phân số 10�2+9�+420�2+20�+920n2+20n+910n2+9n+4 tối giản

9 tháng 2 2020

Nhớ trả lời nhanh nha

NV
20 tháng 3 2023

Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)

\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau

Hay P tối giản

Gọi d=ƯCLN(7n+10;5n+7)

=>35n+50-35n-49 chia hếtcho d

=>1 chia hết cho d

=>d=1

=>PSTG

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

24 tháng 2 2022

\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)

\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)

\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)

\(\text{ Theo đề bài ta có :}\)

\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)

\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)

\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)

\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)

\(\Rightarrow 1 \vdots d\)

\(\Rightarrow d = 1\)

\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(#kisibongdem\)

28 tháng 4 2017

Gọi d là UCLN ( 7n+4 và 5n + 3 )

Vậy \(5n+3⋮d\)và \(7n+4⋮d\)

\(\Rightarrow7\left(5n+3\right)⋮d\)và \(5\left(7n+4\right)⋮d\)

\(\Leftrightarrow35n+21⋮d\)và \(35n+20⋮d\)

\(\Rightarrow35n+21-\left(35n+20\right)⋮d\)

Hay \(1⋮d\)\(\Rightarrow d=1\)hoặc \(-1\)

Vì UCLN(5n+3 va 7n + 4 ) nên \(\frac{7n+4}{5n+3}\)tối giản với mọi n 

k mink nha

17 tháng 7 2020

c) Gọi ƯCLN(4n + 3;5n+4) = d

=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau 

=> \(\frac{4n+3}{5n+4}\)là phân số tối giản

d) Gọi ƯCLN(n+1;2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

f)  Gọi ƯCLN(3n + 2;5n + 3) = d

=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{3n+2}{5n+3}\)là phân số tối giản

17 tháng 7 2020

a) Gọi ƯCLN(n + 3;n + 4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d

Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau

=> \(\frac{3n+3}{9n+8}\)phân số tối giản