\(A=\left|x-1\right|+3x-1-4x\) với x lớn hơn hoặc bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =(x^2+3x)(x^2+3x+2)+1
=(x^2+3x)^2+2(x^2+3x)+1
=(x^2+3x+1)^2>=0 với mọi x
b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2
=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz
=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)
=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)
a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)
\(=1-x\sqrt{x}-x\sqrt{x}\)
\(=1-2x\sqrt{x}\)
b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;
a: \(=4a-4\sqrt{10a}-9\sqrt{10a}=4a-13\sqrt{10a}\)
b: \(=\sqrt{x}\left(4-\sqrt{2}\right)\cdot\sqrt{x}\left(1-\sqrt{2}\right)\)
\(=x\cdot\left(4-4\sqrt{2}-\sqrt{2}+2\right)\)
\(=\left(6-5\sqrt{2}\right)x\)
c: \(=\dfrac{2}{2x-1}\cdot x\sqrt{5}\cdot\left(2x-1\right)=2x\sqrt{5}\)
a) CĂN ký hiệu =v nhé
8 = 2.22 ; x2 -4xy + (2y)2 = (x-2y)2
=> A = 2v2/(x-2y)
b;c tương tự
Bài 1 :
a ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow\left(x-1\right)^2+5\ge5\) \(\forall\) \(x\) (đpcm)
b ) Vì \(\left(x-5\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow A=\left(x-5\right)^2+3\ge3\) \(\forall\) \(x\)
Dấu "=" xảy ra khi \(\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy GTNN của A là 3 <=> x = 5
Bài 2 :
a ) \(A=x^2-2x+2=x^2-x-x+1+1=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)\left(x-1\right)+1=\left(x-1\right)^2+1=B\) (đpcm)
b ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow A=\left(x-1\right)^2+1\ge1\) \(\forall\) \(x\) (Đpcm)
\(x\ge1\)
\(\Rightarrow A=x-1+3x-1-4x\)
\(=-2\)
Vậy A = -2 khi \(x\ge1\)
đề bài là rút gọn nha bạn