Tính \(A=\sqrt{24-x^2}+\sqrt{8-x^2}\) biết \(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NL
0
DN
6
15 tháng 10 2016
1/\(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)
\(\Rightarrow2A=\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)\)
\(\Leftrightarrow2A=16\Rightarrow A=8\)
2/ ĐKXĐ : \(x\ge5\)
\(\sqrt{x-2}+\sqrt{x-5}=\sqrt{x+3}\)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{x-5}\right)^2=x+3\)
\(\Leftrightarrow2x+2\sqrt{x-2}.\sqrt{x-5}-7=x+3\)
\(\Rightarrow2\sqrt{x-2}.\sqrt{x-5}=10-x\)
\(\Leftrightarrow4\left(x-2\right)\left(x-5\right)=x^2-20x+100\)
\(\Leftrightarrow3x^2-8x-60=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)
Vì \(x\ge5\) nên x = 6 thỏa mãn đề bài.
PD
0
Ta có: \(\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)=\left(\sqrt{24-x^2}^2-\sqrt{8-x^2}^2\right)\)
\(\Rightarrow\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)2=24-x^2-\left(8-x^2\right)\)
\(\Rightarrow2A=16\)
\(\Rightarrow A=8\)
Vậy \(A=8\).
?