\(\sqrt{24+8\sqrt{9-x^2}}=x+2\sqrt{3-x}+4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2020

5.

\(\Leftrightarrow x^2+7-\left(x+4\right)\sqrt{x^2+7}+4x=0\)

Đặt \(\sqrt{x^2+7}=t>0\)

\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)

\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{x+4+x-4}{2}=x\\t=\frac{x+4-x+4}{2}=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vn\right)\\x^2+7=16\end{matrix}\right.\)

Câu 6 bạn coi lại đề

NV
13 tháng 8 2020

4.

ĐKXĐ: ...

Đặt \(\sqrt{x+3}=a\ge0\)

\(\Rightarrow x+a=\sqrt{5x^2-a^2}\)

\(\Rightarrow x^2+2ax+a^2=5x^2-a^2\)

\(\Rightarrow2x^2-ax-a^2=0\)

\(\Rightarrow\left(x-a\right)\left(2x+a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=x\\a=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=x\left(x\ge0\right)\\\sqrt{x+3}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\le0\right)\end{matrix}\right.\)

 

29 tháng 10 2020

Trả lời nhanh giúp mình với mình cần gấp lắm

29 tháng 7 2018

1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)

<=> \(\sqrt{\left(x-10\right)^2}=10\)

<=> \(\left|x-10\right|=10\)

=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)

Vậy S = \(\left\{20;0\right\}\)

2) \(\sqrt{x +2\sqrt{x}+1}=6\)

<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)

<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)

<=> \(\left|\sqrt{x}+1\right|=6\)

=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)

Vậy S = \(\left\{25\right\}\)

3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)

<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)

<=> \(\left|x-3\right|=\sqrt{3}+1\)

=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)

Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)

29 tháng 7 2018

4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)

<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)

<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)

<=> \(\left|\sqrt{3x}+1\right|=5\)

=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)

5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)

<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)

<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)

Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)

6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)

<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)

<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)

<=> \(\left|\sqrt{6x}+2\right|=7\)

=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)

=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)

4 tháng 6 2018

Ở onlinemath thì đông người thật nhưng không làm được bài khó

=> sang miny nhé bạn , bạn đặt câu hỏi rồi hỏi luôn emkhongnumberone ( thiên tài trong miny )

=> miny ít người nhưng rất hay onl và rất thông minh

13 tháng 8 2018

thằng kia mày nghĩ sao trong onlime math k ai làm đươc bài khó

AH
Akai Haruma
Giáo viên
3 tháng 10 2018

Câu 1:

ĐK: \(x\geq \frac{-3}{2}\)

\(\sqrt{2x+3}=3-\sqrt{5}\)

\(\Rightarrow 2x+3=(3-\sqrt{5})^2=14-6\sqrt{5}\)

\(\Rightarrow x=\frac{11-6\sqrt{5}}{2}\)

Câu 2: ĐK: \(x\geq 0\)

\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)

\(\Rightarrow 5+\sqrt{7x}=(2+\sqrt{7})^2=11+4\sqrt{7}\)

\(\Rightarrow \sqrt{7x}=6+4\sqrt{7}\)

\(\Rightarrow 7x=(6+4\sqrt{7})^2\Rightarrow x=\frac{(6+4\sqrt{7})^2}{7}\)

AH
Akai Haruma
Giáo viên
3 tháng 10 2018

Câu 3: ĐK: \(x\geq 0\)

\((\sqrt{x}-2)(5-\sqrt{x})=4-x\)

\(\Leftrightarrow 5\sqrt{x}-x-10+2\sqrt{x}=4-x\)

\(\Leftrightarrow 7\sqrt{x}=14\Rightarrow \sqrt{x}=2\Rightarrow x=4\)

Câu 4: ĐK: \(x\ge 1\)

Sửa đề \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{3}{2}\sqrt{9}.\sqrt{x-1}+24\sqrt{\frac{1}{64}}\sqrt{x-1}=-17\)

\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{9\sqrt{x-1}}{2}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow \sqrt{x-1}(\frac{1}{2}-\frac{9}{2}+3)=-17\)

\(\Leftrightarrow -\sqrt{x-1}=-17\Rightarrow \sqrt{x-1}=17\Rightarrow x=17^2+1=290\)

2 tháng 9 2017

Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)

\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)

Vì \(\sqrt{3}\ne0\)

Nên : x - 5 = 0

Vậy x = 5. 

2 tháng 9 2017

b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)

\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)

\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)

Vì \(\sqrt{2}\ne0\)

Nên x - 5 = 0

Suy ra : x = 5

a, \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+\frac{24\sqrt{x-1}}{8}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Rightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\Rightarrow\sqrt{x-1}.-1=-17\)

\(\Rightarrow\sqrt{x-1}=17\)

\(\Rightarrow x-1=289\)

\(\Rightarrow x=290\)

b, \(3x-7\sqrt{x}+4=0\)

\(\Rightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}}\)

c, \(-5x+7\sqrt{x}+12=0\)

\(\Rightarrow-5x-5\sqrt{x}+12\sqrt{x}+12=0\)

\(\Rightarrow-5\sqrt{x}\left(\sqrt{x}+1\right)+12\left(x+1\right)=0\)

\(\Rightarrow\left(\sqrt{x}+1\right)\left(-5\sqrt{x}+12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\-5\sqrt{x}+12=0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1VN\\-5\sqrt{x}=-12\end{cases}}\Rightarrow\orbr{\begin{cases}\\\sqrt{x}=\frac{12}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\frac{144}{25}\end{cases}}}\)

9 tháng 7 2019

1) ĐK: \(x-1\ge0\Leftrightarrow x\ge1\)

pt \(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}.3\sqrt{x-1}+\frac{24}{8}\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=17^2=289\Leftrightarrow x=290\left(tm\right)\)

b) \(3x-7\sqrt{x}+4=0\)

ĐK: \(x\ge0\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\Leftrightarrow t^2=x\)

Ta có phương trình ẩn t: 

\(3t^2-7t+4=0\)( giải đen ta)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=\frac{4}{3}\end{cases}}\)

Với t=1 ta có: \(\sqrt{x}=1\Leftrightarrow x=1\) (tm)

Với t=4/3 ta có: \(\sqrt{x}=\frac{4}{3}\Leftrightarrow x=\frac{16}{9}\) (tm)

Câu c em làm tương tự  câu b nhé!