Chứng tỏ rằng:
a.0,(27)+0,(72)=1
b.0,(22)\(\times\dfrac{9}{2}=1\)
c.\(\left[0,\left(11\right).9\right]^{2003}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{6}{5}\)
b, \(\left(-\dfrac{14}{25}\right)^2.\dfrac{125}{49}+\left(-3\dfrac{11}{36}\right).2\dfrac{2}{17}=\dfrac{4}{5}.\left(-7\right)=-\dfrac{28}{5}\)
c, \(\dfrac{1}{3}-2.1=-\dfrac{5}{3}\)
Áp dụng BĐT cosi:
\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
a) \(=\dfrac{\left(-1\right)^4}{3^4}=\dfrac{1}{81}\)
b) \(=\dfrac{\left(-9\right)^3}{4^3}=\dfrac{-729}{64}\)
c) \(=\left(-\dfrac{2}{10}\right)^2=\left(-\dfrac{1}{5}\right)^2=\dfrac{1}{25}\)
d) \(=1\)
\(a,=\dfrac{1}{81}\\ b,=\dfrac{729}{64}\\ c,=0,04\\ d,=1\)
a) \(5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^{6-5}+1=5+1=6\)
b) \(\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6\)
\(=\left(\dfrac{3}{7}\right)^{21-6}=\left(\dfrac{3}{7}\right)^{15}\)
c) \(\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8-27+12}{27}=-\dfrac{7}{27}\)
\(a)5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^1+1=6\)
\(b,\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{49-40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3=\left(\dfrac{3}{7}\right)^{21}:[\left(\dfrac{3}{7}\right)^2]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6=\left(\dfrac{3}{7}\right)^{21-6}\)
\(=\left(\dfrac{3}{7}\right)^{15}\)
\(c,3.\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=3.\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8}{9}-1+\dfrac{4}{9}\)
\(=\dfrac{8-9+4}{9}=\dfrac{1}{3}\)
a) Ta có: \(2\dfrac{3}{3}\cdot4\cdot\left(-0.4\right)+1\dfrac{3}{5}\cdot1.75+\left(-7.2\right):\dfrac{9}{11}\)
\(=-4.8+\dfrac{8}{5}\cdot\dfrac{7}{4}-\dfrac{36}{5}\cdot\dfrac{11}{9}\)
\(=\dfrac{-24}{5}+\dfrac{14}{5}-\dfrac{44}{5}\)
\(=\dfrac{-54}{5}\)
b) Ta có: \(\left(\dfrac{1}{24}-\dfrac{5}{16}\right):\dfrac{-3}{8}+1^{10}\cdot\left(-5\right)^0\)
\(=\left(\dfrac{2}{48}-\dfrac{15}{48}\right)\cdot\dfrac{8}{-3}+1\cdot1\)
\(=\dfrac{-13}{48}\cdot\dfrac{-8}{3}+1\)
\(=\dfrac{13}{18}+\dfrac{18}{18}=\dfrac{31}{18}\)
a) \(\left|x-\dfrac{4}{11}\right|+\left|5+y\right|=0\)
<=>\(\left[{}\begin{matrix}x-\dfrac{4}{11}=0\\5+y=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=\dfrac{4}{11}\\y=-5\end{matrix}\right.\)
phần b, c tương tự
a) Ta có :
\(0,\left(27\right)+0,\left(72\right)==\dfrac{27}{99}+\dfrac{72}{99}=\dfrac{99}{99}=1\)
\(\Rightarrow0,\left(27\right)+0,\left(72\right)=1\rightarrowđpcm\)
b) Ta có :
\(0,\left(22\right).\dfrac{9}{2}=\dfrac{2}{9}.\dfrac{9}{2}=\dfrac{18}{18}=1\)
\(\Rightarrow0,22.\dfrac{9}{2}=1\rightarrowđpcm\)
c) Ta có :
\(\left[0,\left(11\right).9\right]^{2003}=\left[\dfrac{1}{9}.9\right]^{2003}=\left[\dfrac{9}{9}\right]^{2003}=1^{2003}=1\)
\(\Rightarrow\left[0,\left(11\right).9\right]^{2003}=1\rightarrowđpcm\)
a) \(0,\left(27\right)+0,\left(72\right)=0,\left(99\right)=1\)
b) \(0,\left(22\right)\cdot\dfrac{9}{2}=\dfrac{2}{9}\cdot\dfrac{9}{2}=1\)
c) \(\left[0,\left(11\right)\cdot9\right]^{2003}=\left(\dfrac{1}{9}\cdot9\right)^{2003}=1^{2003}=1\)