K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

(Bạn tự vẽ hình giùm)

Ta có \(\widehat{KAB}=\widehat{AKD}\)(AB // CD; so le trong)

Mà \(\widehat{KAB}=\widehat{DAK}\)(AK là tia phân giác của \(\widehat{A}\))

=> \(\widehat{AKD}=\widehat{DAK}\)

=> \(\Delta ADK\)cân tại D

nên AD = DK (1)

Chứng minh tương tự, ta cũng có: \(\Delta BKC\)cân tại C

nên BC = KC (2)

Lấy (1) cộng (2)

=> AD + BC = DK + KC

Mà \(K\in CD\)(gt)

=> D, K, C thẳng hàng

=> AD + BC = DC (đpcm)

15 tháng 6 2017

3)áp dụng pytago để tính

17 tháng 1 2017

Mình không vẽ hình nhé

a)Ta có: BC=\(4\sqrt{2}\)

Vậy BC=\(4\sqrt{2}\)

b)Xét hai tam giác vuông ADB và ADC có:

                           AB=AC( giả thiết)

                          \(\widehat{ABD}=\widehat{ACD}\)(giả thiết)

Do đó ADB=ADC( cạnh huyền - góc nhọn)

Suy ra DB=DC( hai cạnh tương ứng)

Mà \(D\in BC\)( giả thiết)

\(\Rightarrow\)D là trung điểm của BC

Vậy D là trung điểm của BC

c)Ta có ADB=ADC( cạnh huyền - góc nhọn)( chứng minh trên)

Suy ra \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)

Xét tam giác AED có:

\(\widehat{CAD}=45^0\)( chứng minh trên)

\(\widehat{AED}=90^0\left(DE⊥AC\right)\)

Do đó tam giác AED vuông cân tại E

Vậy tam giác AED vuông cân tại E

d) Vì D là trung điểm của BC

Suy ra BD=DC=\(\frac{4\sqrt{2}}{2}=2\sqrt{2}\)(cm)

Áp dung định lí Pi-ta-go vào tam giác ADC vuông tại D có

\(AD^2+DC^2=AC^2\)

hay \(AD^2=4^2-\left(2\sqrt{2}\right)^2\)

hay \(AD^2=16-8=8\)

\(\Rightarrow AD=\sqrt{8}\)(cm)

Vậy \(AD=\sqrt{8}\left(cm\right)\)

Gọi DI là phân giác của góc ADC(I thuộc AB)

Xét ΔADI có góc ADI=góc AID(=góc CDI)

nên ΔADI cân tại A

=>AD=AI

=>BI=BC

=>ΔBIC cân tại B

=>góc BIC=góc BCI=góc DCI

=>CI là phân giác của góc DCB(ĐPCM)

4 tháng 7 2015

Bạn xem ở http://olm.vn/hoi-dap/tag/H%C3%ACnh-thang.html

22 tháng 6 2019

Em tham khảo câu 1 tại link dưới:

Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

5 tháng 7 2018

1. Vì tứ giác ABCD là hình thang AB//CD nên góc A+ góc D=180 độ mà góc A- góc D=40 do suy ra goc D= (180-40):2=70 do suy ra goc A= 180-70=110 do

Tương tự ta cũng có: \(\widehat{B}+\widehat{C}=180^0\)ma \(\widehat{B}=4\times\widehat{C}\)\(\Rightarrow4\times\widehat{C}+\widehat{C}=180^0\Rightarrow5\times\widehat{C}=180^0\Rightarrow\widehat{C}=36^0\Rightarrow\widehat{B}=180^0-36^0=144^0\)

Còn bài 2 thì tớ chưa nghĩ ra bạn rang đoi nhá

5 tháng 7 2018

2. Vì AB//DC ma \(K\in AB\Rightarrow\widehat{AKD}=\widehat{KDC};\widehat{BKC}=\widehat{KCD}\) (1)

    Vì DK là tia phân giác của \(\widehat{ADC}\Rightarrow\widehat{ADK}=\widehat{KDC}\)và CK là tia phân giác của \(\widehat{BCD}\Rightarrow\widehat{KCB}=\widehat{KCD}\)(2)

Từ(1) vả (2) ta có: \(\widehat{AKD}=\widehat{ADK};\widehat{BKC}=\widehat{BCK}\)suy ra tam giác AKD cân tại A và tam giác KBC cân tại B 

\(\Rightarrow AK=AD;BK=BC\Rightarrow AK+BK=AD+BC\Rightarrow AB=AD+BC\)