ĐỀ BÀI: Hình thang ABCD (AB//CD) có AB=AD+BC . CM rằng các tia phân giác của góc C và D gặp nhau tại 1 điểm thuộc đáy AB. (các bạn giúp mk vs nha, mk sắp phải nộp bài r,CẢM ƠN CÁC BẠN RẤT NHIỀU)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình giùm)
Ta có \(\widehat{KAB}=\widehat{AKD}\)(AB // CD; so le trong)
Mà \(\widehat{KAB}=\widehat{DAK}\)(AK là tia phân giác của \(\widehat{A}\))
=> \(\widehat{AKD}=\widehat{DAK}\)
=> \(\Delta ADK\)cân tại D
nên AD = DK (1)
Chứng minh tương tự, ta cũng có: \(\Delta BKC\)cân tại C
nên BC = KC (2)
Lấy (1) cộng (2)
=> AD + BC = DK + KC
Mà \(K\in CD\)(gt)
=> D, K, C thẳng hàng
=> AD + BC = DC (đpcm)
Mình không vẽ hình nhé
a)Ta có: BC=\(4\sqrt{2}\)
Vậy BC=\(4\sqrt{2}\)
b)Xét hai tam giác vuông ADB và ADC có:
AB=AC( giả thiết)
\(\widehat{ABD}=\widehat{ACD}\)(giả thiết)
Do đó ADB=ADC( cạnh huyền - góc nhọn)
Suy ra DB=DC( hai cạnh tương ứng)
Mà \(D\in BC\)( giả thiết)
\(\Rightarrow\)D là trung điểm của BC
Vậy D là trung điểm của BC
c)Ta có ADB=ADC( cạnh huyền - góc nhọn)( chứng minh trên)
Suy ra \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)
Xét tam giác AED có:
\(\widehat{CAD}=45^0\)( chứng minh trên)
\(\widehat{AED}=90^0\left(DE⊥AC\right)\)
Do đó tam giác AED vuông cân tại E
Vậy tam giác AED vuông cân tại E
d) Vì D là trung điểm của BC
Suy ra BD=DC=\(\frac{4\sqrt{2}}{2}=2\sqrt{2}\)(cm)
Áp dung định lí Pi-ta-go vào tam giác ADC vuông tại D có
\(AD^2+DC^2=AC^2\)
hay \(AD^2=4^2-\left(2\sqrt{2}\right)^2\)
hay \(AD^2=16-8=8\)
\(\Rightarrow AD=\sqrt{8}\)(cm)
Vậy \(AD=\sqrt{8}\left(cm\right)\)
Gọi DI là phân giác của góc ADC(I thuộc AB)
Xét ΔADI có góc ADI=góc AID(=góc CDI)
nên ΔADI cân tại A
=>AD=AI
=>BI=BC
=>ΔBIC cân tại B
=>góc BIC=góc BCI=góc DCI
=>CI là phân giác của góc DCB(ĐPCM)
Em tham khảo câu 1 tại link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
1. Vì tứ giác ABCD là hình thang AB//CD nên góc A+ góc D=180 độ mà góc A- góc D=40 do suy ra goc D= (180-40):2=70 do suy ra goc A= 180-70=110 do
Tương tự ta cũng có: \(\widehat{B}+\widehat{C}=180^0\)ma \(\widehat{B}=4\times\widehat{C}\)\(\Rightarrow4\times\widehat{C}+\widehat{C}=180^0\Rightarrow5\times\widehat{C}=180^0\Rightarrow\widehat{C}=36^0\Rightarrow\widehat{B}=180^0-36^0=144^0\)
Còn bài 2 thì tớ chưa nghĩ ra bạn rang đoi nhá
2. Vì AB//DC ma \(K\in AB\Rightarrow\widehat{AKD}=\widehat{KDC};\widehat{BKC}=\widehat{KCD}\) (1)
Vì DK là tia phân giác của \(\widehat{ADC}\Rightarrow\widehat{ADK}=\widehat{KDC}\)và CK là tia phân giác của \(\widehat{BCD}\Rightarrow\widehat{KCB}=\widehat{KCD}\)(2)
Từ(1) vả (2) ta có: \(\widehat{AKD}=\widehat{ADK};\widehat{BKC}=\widehat{BCK}\)suy ra tam giác AKD cân tại A và tam giác KBC cân tại B
\(\Rightarrow AK=AD;BK=BC\Rightarrow AK+BK=AD+BC\Rightarrow AB=AD+BC\)