K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(VT=\left(a-1\right)\left(a-2\right)\left(1+a+a^2\right)\left(4+2a+a^2\right)\)

\(=\left(a^3-1\right)\left(a^3-8\right)\)

\(=a^6-8a^3-a^3+8\)

\(=a^6-9a^3+8=VP\)

\(\Rightarrowđpcm\)

NV
17 tháng 8 2020

\(VT=\left(a-1\right)\left(a^2+a+1\right)\left(a-2\right)\left(a^2+2a+4\right)\)

\(=\left(a^3-1\right)\left(a^3-8\right)\)

\(=a^6-9a^3+8\)

2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)

3:

a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)

=1+1/3+1

=7/3

b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)

\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)

29 tháng 8 2023

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 8 2023

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

27 tháng 6 2018

Ta chỉ cần  thay a= -3.5 vào biểu thức và nếu nó bằng - 29 thì ta sẽ có đpcm

Bài 2: 

\(VT=\left(a-2\right)\left(a^2+2a+4\right)\left(a-1\right)\left(a^2+a+1\right)\)

\(=\left(a^3-8\right)\left(a^3-1\right)\)

\(=a^6-9a^3+8\)

Bài 3:

\(\Leftrightarrow x^3+8-x\left(x^2-9\right)=26\)

\(\Leftrightarrow x^3+8-x^3+9x=26\)

=>9x=18

hay x=2

3 tháng 7 2018

\(\left(a-1\right)\left(a-2\right)\left(1+a+a^2\right)\)

\(=\left(a^2-3a+2\right)\left(1+a+a^2\right)\)

\(=a^2+a+a^4-3a-3a^2-3a^3+2+2a+2a^2\)

\(=a^4-3a^3+2\)

Có sai không nhỉ?!

5 tháng 7 2021

Trả lời:

Bn tham khỏa xem trong này nha:

https://h.vn/hoi-dap/question/384525.html

Nhớ t i c k nha

~HT~

2 tháng 5 2023

a. Ta có: a > b

4a > 4b ( nhân cả 2 vế cho 4)

4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)

b. Ta có: a > b

-2a < -2b ( nhân cả 2 vế cho -2)

1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)

d. Ta có: a < b 

-2a > -2b ( nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)

 

2 tháng 5 2023

Cảm ưn 😆😊🥰🤩😽🙊🙈🙉

26 tháng 8 2020

lớn hơn hay = thế ạ

26 tháng 8 2020

Ta có :

\(a^2b+b^2c+c^2a\ge\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)\left(1+2a^2b^2c^2\right)\ge9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^{3v}+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)(*)

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\ge3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\ge3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^4\ge3a^2b^2c^3\)

Cộng theo vế

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

#Cừu