Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số nguyên liên tiếp
nên \(A=a\left(a+1\right)\left(a+2\right)⋮3!=6\)
b: \(B=\left(2a-1\right)^3-\left(2a-1\right)\)
\(=\left(2a-1\right)\left[\left(2a-1\right)^2-1\right]\)
\(=\left(2a-1\right)\left(2a-2\right)\cdot2a\)
\(=4a\left(a-1\right)\left(2a-1\right)\)
Vì a;a-1 là hai số liên tiếp nên a(a-1) chia hết cho 2
=>B chia hết cho 8
a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì \(a,a+1\) là 2 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)
Vì \(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)
b, \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=a\left[2a-3-2\left(a+1\right)\right]\)
\(=-5a\) chia hết cho \(5\left(đpcm\right)\)
a. \(\left(a^2+a-1\right)\left(a^2-a+1\right)=a^4+a^2+1\)
b. \(\left(a+2\right)\left(a-2\right)\left(a^2+2a+4\right)\left(a^2-2x+4\right)=a^6-64\)
c. \(\left(2+3y\right)^2-\left(2x-3y\right)^2-12xy=4+12y-4x^2\)
d. \(\left(x+1\right)^3-\left(x-1\right)^3-\left(x^3-1\right)-\left(x-1\right)\left(x^2+x+1\right)=-2x^3+6x^2+4\)
\(A=\left(a^2+\left(a-1\right)\right)\left(a^2-\left(a-1\right)\right)=a^4-\left(a-1\right)^2=a^4-\left(a^2-2a+1\right)=a^4-a^2+2a-1\)
\(B=\left(a+2\right)\left(a^2-2a+4\right)\left(a-2\right)\left(a^2+2a+4\right)=\left(a^3+8\right)\left(a^3-8\right)=a^6-64\)
\(C=9y^2+12y+4-\left(4x^2-12xy+9y^2\right)-12xy=12y+4-4x^2\)
\(D=x^3+3x^2+3x+1-x^3+3x^2-3x+1-x^3+1-x+1=-x^3+6x^2-x+4\)
a) \(a^2+b^2=\left(a+b\right)^2-2ab\)
\(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)\(=a^2+b^2=VT\)
\(\Rightarrowđpcm\)
b)\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
\(VP=a^4+b^4+2a^2b^2-2a^2b^2=a^4+b^4=VT\)\(\Rightarrowđpcm\)
c) \(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)
\(VP=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=a^6+b^6\)
\(VP=VT\Rightarrowđpcm\)
d)\(a^6-b^6=\left(a^2-b^2\right)[\left(a^2+b^2\right)^2-a^2b^2]\)
\(VP=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=a^6-b^6=VT\)
\(VP=VT\Rightarrowđpcm\)
câu 2:
a(b-c)-b(a+c)+c(a-b)=-2bc
ta có:
a( b-c ) - b ( a +c )+ c(a-b)
=ab-ac-(ba+bc)+(ca-cb)
=ab-ac-ba-bc+ca-cb
=ab-ba-ac+ca-bc-cb
=0-0-bc-cb
=bc+(-cb)
=-2cb hay -2bc
b)a(1-b)+a(a^2-1)=a(a^2-b)
Ta có:
a(1-b) + a(a^2-1)
=a-ab+(a^3-a)
=a-ab+a^3-a
=a-a-ab+a^3
=0-ab+a^3
=-ab+a^3
=a(-b +a^2) hay a(a^2-b)
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng
\(VT=\left(a-1\right)\left(a^2+a+1\right)\left(a-2\right)\left(a^2+2a+4\right)\)
\(=\left(a^3-1\right)\left(a^3-8\right)\)
\(=a^6-9a^3+8\)