CMR : Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 và a + b + c = abc thì \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)
Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ca\right)\left(a-abc\right)\)
\(\Leftrightarrow a^2b+ab^2c^2-a^3bc-b^2c=b^2a+a^2bc^2-ca^2-ab^3c\)
\(\Leftrightarrow a^2b-ab^2-b^2c+ca^2=a^2bc^2-ab^3c+a^3bc-ab^2c^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac})=4 \\<=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{a+b+c}{abc}=4 \\<=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4(do\ a+b+c=abc) \\<=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2 (đpcm)\)
Theo đề ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\)
=>\(2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
=>\(\dfrac{c+a+b}{abc}=1\Rightarrow a+b+c=abc\)
=> Đpcm
có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =2
⇒\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)2 = 4
⇔\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4.
⇒2 + \(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4 (do \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)=2)
⇔\(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =2
⇔ \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) =1
⇔\(abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) =abc
⇔a +b +c =abc(đpcm)
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac.
(1/a + 1/b + 1/c)2 = 1/a2 + 1/b2 + 1/c2 + 2(1/ab + 1/bc + 1/ac) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2(bcac + abac + abbc)/(a2b2c2) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2abc(a + b + c)/(a2b2c2) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2 = 4
(vì abc(a + b + c) = a2 b2 c2)
<=> 1/a2 + 1/b2 + 1/c2 = 2
Chứng minh rằng nếu a,b,c \(\ge\)0 và abc=1 thì
\(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
\(\Leftrightarrow\dfrac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\le1\)
\(\Leftrightarrow\dfrac{ab+bc+ca+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\le1\)
\(\Leftrightarrow ab+bc+ca+12\le2\left(ab+bc+ca\right)+9\)
\(\Leftrightarrow ab+bc+ca\ge3\)
Hiển nhiên đúng do: \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)
Vì abc=1 , ta đặt \(a=\dfrac{x}{y};b=\dfrac{y}{z};c=\dfrac{z}{x}\)
Điều phải chứng minh tương đương với:
\(\dfrac{1}{2+\dfrac{x}{y}}+\dfrac{1}{2+\dfrac{y}{z}}+\dfrac{1}{2+\dfrac{z}{x}}\le1\\ \Leftrightarrow\dfrac{y}{2y+x}+\dfrac{z}{2z+y}+\dfrac{x}{2x+z}\le1\\ \Leftrightarrow\dfrac{2y}{2y+x}+\dfrac{2z}{2z+y}+\dfrac{2x}{2x+z}\le2\\ \Leftrightarrow\dfrac{x}{2y+x}+\dfrac{y}{2z+y}+\dfrac{z}{2x+z}\ge1\left(1\right)\)
Áp dụng bất đẳng thức bunhiacopxki dạng phân thức ta có:
\(\dfrac{x}{2y+x}+\dfrac{y}{2z+x}+\dfrac{z}{2x+z}=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2zx}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
=> bài toán được chứng minh
Dấu bằng xảy ra khi x=y=z=1 <=>a=b=c=1
2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)
1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).
CM:....
Đặt 2x = x', 2z = z'.
Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)
\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)
\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)
Ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{ac}=\dfrac{2}{a}\)
\(\dfrac{1}{ab}+\dfrac{1}{b^2}+\dfrac{1}{bc}=\dfrac{2}{b}\)
\(\dfrac{1}{ac}+\dfrac{1}{bc}+\dfrac{1}{c^2}=\dfrac{2}{c}\)
Cộng vế với vế ta được:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\)\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{c+a+b}{abc}=2.2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)
Tui nghĩ phần đầu nên trình bày rõ hơn