Tính giá trị của biểu thức N=\(\dfrac{3x-5y}{2x-y}\) với \(\dfrac{x}{y}=\dfrac{11}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Ta có: \(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=11k\\y=3k\end{matrix}\right.\)
\(M=\dfrac{3x-5y}{2x-y}=\dfrac{33k-15k}{22k-3k}=\dfrac{18k}{19k}=\dfrac{18}{19}\)
Vậy \(M=\dfrac{18}{19}\)
\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)
b.x=1
\(\Rightarrow3.1^2-2.1-5=-4\)
x=-1
\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
Ta có: \(E=\dfrac{3x^2+5y^2}{4x^2-y^2}\)
\(=\dfrac{3\cdot\left(2k\right)^2+5\cdot\left(3k\right)^2}{4\cdot\left(2k\right)^2-\left(3k\right)^2}=\dfrac{3\cdot4k^2+5\cdot9k^2}{4\cdot4k^2-9k^2}\)
\(=\dfrac{12k^2+45k^2}{16k^2-9k^2}=\dfrac{57k^2}{7k^2}=\dfrac{57}{7}\)
Ta có: \(\dfrac{x}{y}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{2}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\)
Ta có: \(H=\dfrac{2x-3y}{x-5y}\)
\(=\dfrac{2\cdot3k-3\cdot2k}{3k-5\cdot2k}=\dfrac{6k-6k}{3k-10k}=0\)
Ta có: xy=32xy=32
⇔x3=y2⇔x3=y2
Đặt x3=y2=kx3=y2=k
⇔{x=3ky=2k⇔{x=3ky=2k
Ta có: H=2x−3yx−5yH=2x−3yx−5y
=2⋅3k−3⋅2k3k−5⋅2k=6k−6k3k−10k=0
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow x=-4k;y=-7k;z=3k\) (1)
Thay (1) vào A , ta được
\(A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)
\(\Rightarrow A=\dfrac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)
\(\Rightarrow A=\dfrac{k[8+\left(-7\right)+15]}{k[-8+21+\left(-18\right)]}\)
\(\Rightarrow A=\dfrac{16k}{-5k}\)
\(\Rightarrow A=\dfrac{16}{5}\)
Vậy \(A=\dfrac{16}{5}\)
2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0
=> 2x=3y; 5y=2z ; 3z=5x => x/3=y/2; y/2=z/5
=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31
x/3 = 3y/6=2z/10 = (x-3y+2z)/7
=> (12x+5y-3z)/ (x-3y+2z)=31/7
\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)
ta có x/y =11/3 suy ra x=11y/3
thay vào N ta được
N=(11y-5y)/(22y/3-y)=18/19