\(\dfrac{3x-5y}{2x-y}\) với \(\dfrac{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Ta có: \(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)

Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=11k\\y=3k\end{matrix}\right.\)

\(M=\dfrac{3x-5y}{2x-y}=\dfrac{33k-15k}{22k-3k}=\dfrac{18k}{19k}=\dfrac{18}{19}\)

Vậy \(M=\dfrac{18}{19}\)

7 tháng 2 2018

a. Thay x = 1/3 ; y = - 1/5 vào biểu thức ta có:

3.1/3 - 5.(-1/5 ) + 1 = 1 + 1 + 1 = 3

Vậy giá trị của biểu thức 3x – 5y + 1 tại x = 1/3 ; y = - 1/5 là 3.

b. *Thay x = 1 vào biểu thức ta có:

3.12 – 2.1 – 5 = 3 – 2 – 5 = -4

Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = 1 là -4.

*Thay x = -1 vào biểu thức ta có:

3.(-1)2 – 2.(-1) – 5 = 3.1 + 2 – 5 = 0

Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = -1 là 0.

*Thay x = 5/3 vào biểu thức ta có:

3.(5/3 )2 – 2.5/3 – 5 = 3.25/9 – 10/3 – 15/3 = 0

Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = 5/3 là 0.

c. Thay x = 4, y = -1, z = -1 vào biểu thức ta có:

4 – 2.(-1)2 + (-1)3 = 4 – 2.1 + (-1) = 4 - 2 – 1= 1

Vậy giá trị của biểu thức x – 2y2 + z3 tại x = 4, y = -1, z = -1 là 1.

28 tháng 5 2018

\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)

\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)

\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)

\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)

\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)

10 tháng 3 2017

có onl k mk dạy cách làm bài2, bài1 bn bit lam r

10 tháng 3 2017

có onl, cảm ơn nha ^^

13 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{2x}\\ \Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{2x}=\dfrac{\left(3xz-3xz\right)+\left(2yz-2yz\right)+\left(4xy-4xy\right)}{4z+3y+2x}=0\\ \Rightarrow3x-2y=2z-4x=4y-3z=0\\ \Rightarrow3x=2y;2z=4x;4y=3z\)

3x=2y => \(\dfrac{x}{2}=\dfrac{y}{3}\)

4x=2z\(\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\)

\(\dfrac{\Rightarrow x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\\ \Rightarrow x=2k;y=3k;z=4k\)

Thế dô A ; tự tinh !!

12 tháng 12 2017

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow x=-4k;y=-7k;z=3k\)(1)

Thay (1) vào ta có :

\(A=\dfrac{-2x+y+5z}{2x-3y-6z}=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{8k+-7k+15k}{\left(-8k\right)-\left(-27k\right)-18k}=\dfrac{k\left(8+-7+15\right)}{k\left(-8+27-18\right)}=\dfrac{16}{17}\)

16 tháng 3 2017

\(M+N=3x^2-5y^3+2x^2+y^3-1\)

\(=\left(3x^2+2x^2\right)+\left(-5y^3+y^3\right)-1\)

\(=5x^3-4y^3-1\)

\(M-N=3x^2-5y^3-2x^2-y^3+1\)

\(=\left(3x^2-2x^2\right)+\left(-5y^3-y^3\right)+1\)

\(=x^2-6y^3+1\)

Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\) Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\) Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\) Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) Câu 5: Cho 4 số a, b,...
Đọc tiếp

Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)

Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\)

Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)\(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)

Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

Câu 5: Cho 4 số a, b, c, d đều ≠ 0 thoả mãn \(b^2=ac\), \(c^2=bd\), \(b^3+27c^3+8d^3\) ≠ 0. Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)

Câu 6: Cho \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức A = \(2016x+y^{2017}+x^{2017}\)

Câu 7: Tìm giá trị nhỏ nhất của biểu thức A biết: \(A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+zy+zx-2000\right|\)

Câu 8: Tìm 3 số a, b, c biết: \(\dfrac{3a-2b}{4}=\dfrac{2c-4a}{3}=\dfrac{4b-3c}{2}\)\(a+b+c=18\).

5
3 tháng 12 2018

hỏi mỗi từng câu 1 thôi nhé ! Vậy mình giải cho . Mình k có ý kiếm GP + SP đâu . Nhưng nhìn 8 câu này hoa hết cả mắt :v

3 tháng 12 2018

Đúng thật. Tớ nhìn cũng thấy ngán mà. Nhiều quá nên hơi nản limdim