Tính :
a) \(125.\left(-24\right)+24.225\)
b) \(26.\left(-125\right)-125.\left(-36\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a.\left(-356+57\right)-\left(27-356\right)=-356+57-27+356=\left(-356+356\right)+\left(57-27\right)=30\) \(b.125.\left(-24+24.225\right)=125.\left(-24+5400\right)=125.\left(-24\right)+125.5400=-3000+675000=672000\)
\(c.26.\left(-125\right)-125.\left(-36\right)=-125.\left(26-36\right)=-125.\left(-10\right)=1250\)
Bài 2:
\(a.\left(2x-4\right)^2=0\)
\(\Rightarrow2x-4=0\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(b.\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\)
Để (x+5) chia hết cho (x+3) thì 2 phải chia hết cho (x+3)
\(\Rightarrow x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(x+3=1\Rightarrow x=-2\)
\(x+3=-1\Rightarrow x=-4\)
\(x+3=2\Rightarrow x=-1\)
\(x+3=-2\Rightarrow x=-5\)
Vậy \(x\in\left\{-2;-4;-1;-5\right\}\)
Bài 2:
a)\(\left(2x-4\right)^2=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
b)\(\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\in Z\)
Suy ra \(2⋮x+3\Rightarrow x+3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{-2;-4;-1;-5\right\}\)
a)125.(-24) + 24.225
= 125. [(-24) + 24].225
= 125.0.225
= 0.
1. Tính nhanh:
a) \(125.\left(-24\right)+24.225\)
= \(-125.24+24.225\)
\(=24\left(-125+225\right)\)
\(=24\) . \(100\)
= \(2400\)
b) \(26.\left(-125\right)-125.\left(-36\right)+125.\left(-7\right)\)
\(=-26.125-125.\left(-36\right)+125.\left(-7\right)\)
\(=125\left[-26-\left(-36\right)+\left(-7\right)\right]\)
\(=125.3\)
\(=375.\)
a, \(125\cdot\left(-24\right)+24\cdot225\)
\(=\left(-125\right)\cdot24+24\cdot225\)
\(=24\cdot\left[\left(-125\right)+225\right]\)
\(=24\cdot100\)
\(=2400\)
b, \(26\cdot\left(-125\right)-125\cdot\left(-36\right)+125\cdot\left(-7\right)\)
\(=\left(-26\right)\cdot125-125\cdot\left(-36\right)+125\cdot\left(-7\right)\)
\(=125\cdot\left[\left(-26\right)+36-7\right]\)
\(=125\cdot3\)
\(=375\)
a)-125.24+24.225
=24.(-125+225)
=24.100
=2400
b)-26.125-125.(-36)
=125.(-26+36)
=125.10
=1250
\(=\)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)\(...\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(0\) \(....\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(0\)
#)Giải :
a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)
b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)
a) \(125\cdot\left(-24\right)+24\cdot225\)
\(=\left(225-125\right)\cdot24\)
\(=100\cdot24\)
\(=2400\)
b) \(26\cdot\left(-125\right)-125\cdot\left(-36\right)\)
\(=\left(36-26\right)\cdot125\)
\(=10\cdot125\)
\(=1250\)
a) 2400