Tính \(22.\left(-6\right)\). Từ đó suy ra các kết quả :
\(\left(+22\right).\left(+6\right)\) \(\left(-22\right).\left(+6\right)\) \(\left(-22\right).\left(-6\right)\) \(\left(+6\right).\left(-22\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Cách 1.
\(\begin{array}{l}\left( {4 + 32 + 6} \right) + \left( {10 - 36 - 6} \right)\\ = 4 + 32 + 6 + 10 - 36 - 6\\ = 52 + \left( { - 36} \right) + \left( { - 6} \right)\\ = 52 + \left( { - 42} \right) = 52 - 42 = 10\end{array}\)
Cách 2.
\(\begin{array}{l}\left( {4 + 32 + 6} \right) + \left( {10 - 36 - 6} \right)\\ = 4 + 32 + 6 + 10 - 36 - 6\\ = 36 + 6 + 10 + \left( { - 36} \right) + \left( { - 6} \right)\\ = 36 + \left( { - 36} \right) + 6 + \left( { - 6} \right) + 10\\ = 0 + 0 + 10 = 10\end{array}\)
b) \(\left( {77 + 22 - 65} \right) - \left( {67 + 12 - 75} \right)\)
\(\begin{array}{l} = 77 + 22 - 65 - 67 - 12 + 75\\ = 77 - 67 + 22 - 12 + 75 - 65\\ = 10 + 10 + 10 = 30\end{array}\)
c) \( - \left( { - 21 + 43 + 7} \right) - \left( {11 - 53 - 17} \right)\)
\(\begin{array}{l} = 21 - 43 - 7 - 11 + 53 + 17\\ = 21 - 11 + 53 - 43 + 17 - 7\\ = 10 + 10 + 10 = 30\end{array}\)
a, \(\frac{\left(\frac{1}{9}\right)^6\cdot\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{\left(\frac{1}{\left(3^2\right)^6}\right)\cdot\left(\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot3\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}=\frac{\frac{1}{3^{12}}\cdot\left(\frac{1}{2}\right)^{21}\cdot3^7}{\frac{1}{3^{13}}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{3}{\frac{1}{3}\cdot\frac{1}{2}}=3\div\frac{1}{6}=3.6=18\)
b, Làm tương tự nha bn
a: \(y'< 0\)
=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)
=>\(\left(x-3\right)\left(-3x-6\right)< 0\)
=>\(\left(x+2\right)\left(x-3\right)>0\)
=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)
y'>0
=>\(\left(x+2\right)\left(x-3\right)< 0\)
=>\(-2< x< 3\)
y'=0
=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Ta có bảng xét dấu sau:
x | \(-\infty\) -2 1 3 +\(\infty\) |
y' | - 0 + 0 + 0 - |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)
b: y'<0
=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)
=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)
y'>0
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)
Ta sẽ có bảng xét dấu sau đây:
x | \(-\infty\) -1 3/4 1 3 +\(\infty\) |
y' | + 0 - 0 + 0 - 0 + |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)
a) \(\left( {\frac{7}{3} + 3,5} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + 0,5\)
\(\begin{array}{l} = \left( {\frac{7}{3} + \frac{7}{2}} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 25.7 + 22.6}}{{6.7}} + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 43}}{{7.6}} + \frac{1}{2} = \frac{{35}}{6}.\frac{{7.6}}{{ - 43}} + \frac{1}{2}\\ = \frac{{ - 245}}{{43}} + \frac{1}{2} = \frac{{ - 245.2 + 43}}{{43.2}} = \frac{{ - 447}}{{86}}\end{array}\)
b) \(\frac{{38}}{7} + \left( { - 3,25} \right) - \frac{{17}}{7} + 4,55\)
\(\begin{array}{l} = \left( {\frac{{38}}{7} - \frac{{17}}{7}} \right) + \left( {4,55 - 3,25} \right)\\ = \frac{{38 - 17}}{7} + 1,3 = \frac{{21}}{7} +1,3\\ = 3 + 1,3 = 4,3\end{array}\)
\(\left( { - 1} \right) + \left( { - 3} \right) = - \left( {1 + 3} \right) = - 4\)
\(\left( { - 3} \right) + \left( { - 1} \right) = - \left( {3 + 1} \right) = - 4\)
\( \Rightarrow \left( { - 1} \right) + \left( { - 3} \right) = \left( { - 3} \right) + \left( { - 1} \right)\)
\(\left( { - 7} \right) + \left( { + 6} \right) = - \left( {7 - 6} \right) = - 1\)
\(\left( { + 6} \right) + \left( { - 7} \right) = - \left( {7 - 6} \right) = - 1\)
\( \Rightarrow \left( { - 7} \right) + \left( { + 6} \right) = \left( { + 6} \right) + \left( { - 7} \right)\)
a)
Cách 1: Kết hợp các cặp số đối nhau
\(23 + \left( { - 77} \right) + \left( { - 23} \right) + 77\)
\( = 23 + \left( { - 23} \right) + \left( { - 77} \right) + 77\)(tính chất giao hoán và kết hợp)
\( = \left[ {23 + \left( { - 23} \right)} \right] + \left[ {\left( { - 77} \right) + 77} \right]\)
\( = 0 + 0 = 0\)
Cách 2: Cộng các số nguyên âm với nhau, các số nguyên dương với nhau.
\(23 + \left( { - 77} \right) + \left( { - 23} \right) + 77\)
\( = 23 + 77 + \left( { - 77} \right) + \left( { - 23} \right)\)(tính chất giao hoán và kết hợp)
\( = 100 + \left( { - 100} \right) = 0\)
b) \(\left( { - 2020} \right) + 2021 + 21 + \left( { - 22} \right)\)
\( = \left( { - 2020} \right) + \left( { - 22} \right) + 2021 + 21\) (tính chất giao hoán và kết hợp)
\( = (- 2042) + 2042 = 0\)
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
Xét \(22.\left(-6\right)=\left(-132\right)\) :
\(\Rightarrow\left\{{}\begin{matrix}\left(+22\right).\left(+6\right)=\left(+132\right)\\\left(+6\right).\left(-22\right)=\left(-132\right)\\\left(-22\right).\left(+6\right)=\left(-132\right)\end{matrix}\right.\)
(+22).(+6) = 132
(-22).(-6) = 132
(-22).(+6) = -132
(+6).(-22) = -132