K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

chỉ biết cách làm mấy dạng căn trong căn như vầy là phá từ căn nhỏ nhất lên bằng cách phân tích biểu thức trong căn đó thành dạng bình phương 1 số.

\(\sqrt{53-20\sqrt{4+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(8+2\cdot2\sqrt{2}+1\right)}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{53-20\sqrt{4+\left|2\sqrt{2}+1\right|}}\)

\(=\sqrt{53-20\sqrt{5+2\sqrt{2}}}\)

= { \(5+2\sqrt{2}\) bằng bao nhiêu bình phương không biết => không làm được, hóng người trả lời câu này cả buổi để tham khảo, nhưng chả thấy ai hết, khả năng của t chỉ được thế thôi , xin lỗi nhé}

20 tháng 5 2017

Bài này chắc g.viên dạy của tớ cho sai đề bạn ạ:))...Dù sao cũng cảm ơn bạn nhiều ạ:)))ok

30 tháng 6 2018

\(A=\sqrt{24+8\sqrt{5}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{5+2.4\sqrt{5}+16}+\sqrt{4-2.2\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{5}+4\right)}^2+\sqrt{\left(2-\sqrt{3}\right)}^2\)

\(=|\sqrt{5}+4|+|2-\sqrt{3}|\)

\(=\sqrt{5}+4+4-\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}+8\)

Ko biết đề sai ko?

30 tháng 6 2018

Cj gì ơi , mặc dù em không biết làm bài của cj e mới có lớp 7 thui 

Nhưng .... e iu cái ảnh 4D trong hình đại diện của cj 

Cj có phải ARMY ko zợ , nếu phải cho e kb nha , ko phải cx dc ạ !!!

Đừng anti tui nhé , mọi người , mơn nhìu !!!

~ HOK TỐT ~

NV
23 tháng 1 2024

ĐKXĐ: \(0\le x\le9\)

Bình phương 2 vế ta được:

\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)

\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)

\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)

Tới đây em tự hoàn thành nốt

18 tháng 6 2023

\(1,\sqrt{4\left(a-4\right)^2}\left(dkxd:a\ge4\right)\)

\(=\sqrt{4}.\sqrt{\left(a-4\right)^2}\)

\(=\sqrt{2^2}.\left|a-4\right|\)

\(=2\left(a-4\right)\)

\(=2a-8\)

\(2,\sqrt{9\left(b-5\right)^2}\left(dkxd:b< 5\right)\)

\(=\sqrt{9}.\sqrt{\left(b-5\right)^2}\)

\(=\sqrt{3^2}.\left|b-5\right|\)

\(=3\left(-b+5\right)\)

\(=-3b+15\)

 

18 tháng 6 2023

Thế -b+5 khác 5-b à 

Ngô Hải Nam
26 tháng 7 2021

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

26 tháng 7 2021

mình nghĩ ĐKXĐ là như này : 

x+2≥0

➩ x≥-2

có phải k

\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)

\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)

11 tháng 3 2020

ĐK: \(x\ge0\)

+) Với x = 0 => A = 0

+) Với x khác 0

Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)

=> \(A\le\frac{4}{3}\)

Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1

Vậy max A = 4/3 tại x = 1

Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN 

13 tháng 9 2021

a, \(\sqrt{17-12\sqrt{2}}-\sqrt{17+12\sqrt{2}}\)

\(=\sqrt{17-2.3.2\sqrt{2}}-\sqrt{17+2.3.2\sqrt{2}}\)

\(=\sqrt{9-2.3.2\sqrt{2}+8}-\sqrt{9+2.3.2\sqrt{2}+8}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(3+2\sqrt{2}\right)^2}=\left|3-2\sqrt{2}\right|-\left|3+2\sqrt{2}\right|\)

\(=3-2\sqrt{2}-3-2\sqrt{2}=-4\sqrt{2}\)

b, \(\sqrt{31-12\sqrt{3}}-\sqrt{31+12\sqrt{3}}\)

\(=\sqrt{31-2.2.3\sqrt{3}}-\sqrt{31+2.2.3\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{3}-2\right)^2}-\sqrt{\left(3\sqrt{3}+2\right)^2}=\left|3\sqrt{3}-2\right|-\left|3\sqrt{3}+2\right|\)

\(=3\sqrt{3}-2-3\sqrt{3}-2=-4\)

4 tháng 7 2018

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right).\left(1+\sqrt{2}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right).\left(\sqrt{99}+\sqrt{100}\right)}\)

\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)

4 tháng 7 2018

ai k dung mik giai cho

11 tháng 12 2021

a, \(\sqrt{25}-3\sqrt{\dfrac{4}{9}}=5-3.\dfrac{2}{3}=3\)

11 tháng 12 2021

b, \(\left(2-\dfrac{5}{3}\right):\left(\dfrac{2}{7}+\dfrac{5}{21}-1\right)\)

\(=\dfrac{1}{3}:\dfrac{6+5-21}{21}\)

\(=-\dfrac{1}{3}.\dfrac{21}{10}\)

\(=-\dfrac{7}{10}\)