K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

chỉ biết cách làm mấy dạng căn trong căn như vầy là phá từ căn nhỏ nhất lên bằng cách phân tích biểu thức trong căn đó thành dạng bình phương 1 số.

\(\sqrt{53-20\sqrt{4+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(8+2\cdot2\sqrt{2}+1\right)}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{53-20\sqrt{4+\left|2\sqrt{2}+1\right|}}\)

\(=\sqrt{53-20\sqrt{5+2\sqrt{2}}}\)

= { \(5+2\sqrt{2}\) bằng bao nhiêu bình phương không biết => không làm được, hóng người trả lời câu này cả buổi để tham khảo, nhưng chả thấy ai hết, khả năng của t chỉ được thế thôi , xin lỗi nhé}

20 tháng 5 2017

Bài này chắc g.viên dạy của tớ cho sai đề bạn ạ:))...Dù sao cũng cảm ơn bạn nhiều ạ:)))ok

13 tháng 5 2017

\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)

(AM-GM)

do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)

Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)

13 tháng 5 2017

u cha ông cx giỏi AM-GM z !!

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

7 tháng 6 2017

\(\sqrt{18-2\sqrt{65}}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{13}\right)^2}\)

\(=\sqrt{13}-\sqrt{5}\)

5 tháng 3 2017

=\(\dfrac{3}{2}\) đó bạn

5 tháng 3 2017

vâng ạ,em cảm ơn vui

3 tháng 8 2017

a) \(\sqrt{36-6\times2\sqrt{5}+5-5}\)

=\(\sqrt{\left(6-\sqrt{5}\right)^2-5}\)=\(\sqrt{\left(6-\sqrt{5}-\sqrt{5}\right)\left(6-\sqrt{5}+\sqrt{5}\right)}\)

=\(\sqrt{\left(5-2\sqrt{5}+1\right)\times6}\)

=\(\sqrt{\left(\sqrt{5}-1\right)^2\times6}\)

=(\(\sqrt{5}-1\))\(\times\)\(\sqrt{6}\)

Câu b muộn rùi nghỉ đây bạn tự nghĩ đi dễ mà

4 tháng 8 2017

Mk bt lm hết rùi nhưng dù sao cũng cảm ơn nha ><

24 tháng 12 2016

bài này có cái căn uy hiếp chứ chả ích j

24 tháng 12 2016

\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}+2\sqrt{x+\frac{1}{4}}\cdot\frac{1}{2}+\frac{1}{4}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=2\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\) (do \(\sqrt{x+\frac{1}{4}}+\frac{1}{2}>0\forall x\))

\(\Leftrightarrow\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

\(\Leftrightarrow x+\frac{1}{4}=\frac{9}{4}\)

\(\Leftrightarrow x=2\)

12 tháng 7 2017

1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)

\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)

\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)

\(=\sqrt{4}=2\)

12 tháng 7 2017

1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)