K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

xét (o) ta có : cung BA bằng cung AC (A là điểm chính giửa cung nhỏ BC)

BMA là góc nội tiếp chắng cung BA

ACQ là góc tạo bởi tia tiếp tuyến và dây chắng cung AC

mà cung BA bằng cung AC (chứng minh trên)

\(\Rightarrow\) BMA = ACQ

\(\Leftrightarrow\) PMQ = PCQ

xét tứ giác PQCM ta có :

PMQ = PCQ (chứng minh trên)

mà PMQ và PCQ là 2 góc kề nhau cùng chắng cung PQ của tứ giác PQCM

\(\Rightarrow\) tứ giác PQCM là tứ giác nội tiếp (đpcm)

23 tháng 5 2017

xét (o) ta có : BMA = BCA (2 góc nội tiếp cùng chắng cung AB)

xét đường tròn ngoại tiếp tứ giác PQCM ta có :

CPQ = CMQ

\(\Leftrightarrow\) CPQ = AMC

mà BMA = AMC (cung AB bằng cung AC)

\(\Rightarrow\) BCA = CPQ

mà 2 góc này ở vị trí so le

\(\Rightarrow\) PQ // BC (đpcm)

26 tháng 11 2021

Xét đường tròn (O), ta có M là điểm chính giữa của cung nhỏ BC \(\Rightarrow\widebat{MB}=\widebat{MC}\)

Xét tiếp đường tròn (O) có \(\widehat{BAM}\)và \(\widehat{CAM}\)là các góc nội tiếp lần lượt chắn các cung MB và MC của (O). Mà \(\widebat{MB}=\widebat{MC}\left(cmt\right)\)\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)(trong 1 đường tròn, các góc nội tiếp chắn các cung bằng nhau thì bằng nhau)

Lại xét đường tròn (O) có CP là tiếp tuyến tại C và dây cung CM \(\Rightarrow\widehat{PCM}=\frac{1}{2}sđ\widebat{CM}\)(góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn).

Mặt khác \(\widehat{CAM}\)là góc nội tiếp chắn \(\widebat{CM}\)nên \(\widehat{CAM}=\frac{1}{2}sđ\widebat{CM}\)(trong 1 đường tròn, góc nội tiếp chắn một cung bằng nửa số đo cung bị chắn)

\(\Rightarrow\widehat{PCM}=\widehat{CAM}\left(=\frac{1}{2}sđ\widebat{CM}\right)\)

Mà \(\widehat{CAM}=\widehat{BAM}\left(cmt\right)\Rightarrow\widehat{PCM}=\widehat{BAM}\left(=\widehat{CAM}\right)\Rightarrow\widehat{PCK}=\widehat{KAP}\)

Xét tứ giác ACPK có \(\widehat{PCK}=\widehat{KAP}\left(cmt\right)\)

\(\Rightarrow\)Tứ giác ACPK nội tiếp (tứ giác có hai đỉnh kề nhìn cạnh đối diện dưới dạng các góc bằng nhau thì tứ giác đó nội tiếp)

27 tháng 11 2021

Bạn ơi, mình vừa mới nghĩ ra cách làm này bạn xem giúp mình có đúng ko ạ,

Xét đường tròn (O) có:

∠APC và ∠AKC là 2 góc có đỉnh nằm ngoài đường tròn,

=> \(\text{∠}APC=\frac{sd\widebat{AC}-sd\widebat{MC}}{2}\)

     \(\text{∠}AKC=\frac{sd\widebat{AC}-sd\widebat{MB}}{2}\)

Mà M là điểm nằm giữa cung nhỏ BC

 \(=>\widebat{MC}=\widebat{MB}\)

Vậy suy ra ∠APC = ∠AKC

=> Tứ giác ACPK nội tiếp 

a: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC và góc OBA=góc OCA=90 đọ

Xét tứ giác ABOC có

góc OBA=góc OCA=góc BOC=90 độ

AB=AC

=>ABOC là hìh vuông

b: Xét (O) có

MB,MI là tiếp tuyến

=>MB=MI và góc IOM=góc BOM=1/2*góc IOB

Xét (O) có

NC,NI là tiếp tuyến

=>NC=NI và góc ION=góc CON=1/2*góc IOC

mà góc MON=1/2*góc BOC=45 độ

nên góc HON=45 độ

góc BOC=90 độ

=>sđ cung BC=90 độ

=>góc NCM=1/2*sđ cung BC=45 độ

=>góc NCH=45 độ

Vì góc NCH=góc NOH

nên OHNC nội tiếp

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).