K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Giải:

Ta có: \(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1}{m}=\dfrac{1}{2}-\dfrac{n}{6}\)

\(\Leftrightarrow\dfrac{1}{m}=\dfrac{3}{6}-\dfrac{n}{6}=\dfrac{3-n}{6}\)

\(\Leftrightarrow1.6=6=m\left(3-n\right)\)

\(6=1.6=2.3=\left(-1\right).\left(-6\right)=\left(-2\right).\left(-3\right)\)

Ta có bảng sau:

\(m\) \(1\) \(-1\) \(6\) \(-6\) \(2\) \(-2\) \(3\) \(-3\)
\(3-n\) \(6\) \(-6\) \(1\) \(-1\) \(3\) \(-3\) \(2\) \(-2\)
\(n\) \(-3\) \(9\) \(2\) \(4\) \(0\) \(6\) \(1\) \(5\)

Vậy...


13 tháng 5 2017

Ta có \(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{m}=\dfrac{1}{2}-\dfrac{n}{6}\)

\(\Rightarrow\dfrac{1}{m}=\dfrac{3}{6}-\dfrac{n}{6}\)

\(\Rightarrow\dfrac{1}{m}=\dfrac{3-n}{6}\)

\(\Rightarrow1\times6=\left(3-n\right)\times m\)

\(\Rightarrow6=\left(3-n\right)\times m\)

\(\Rightarrow\left(3-n\right);m\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow\left(3-n\right)\times m=6=(-1)\times\left(-6\right)=(-6)\times\left(-1\right)=\left(-2\right)\times\left(-3\right)=\left(-3\right)\times\left(-2\right)=1\times6=6\times1=2\times3=3\times2\)

Ta có bảng sau

3-n -6 -3 -2 -1 1 2 3 6
m -1 -2 -3 -6 6 3 2 1
n 9 6 5 4 2 1 0 -3

Vậy các cặp m,n thỏa mãn là

m -1 -2 -3 -6 1 2 3 6
n 9 6 5 4 2 1 0 -3

28 tháng 7 2021

m = 5 

n = -1

28 tháng 7 2021

mình nhầm câu trên

 

24 tháng 11 2021

\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)

6 tháng 7 2017

Hỏi đáp Toán

6 tháng 7 2017

\(\dfrac{1}{x}=\dfrac{1}{6}+\dfrac{y}{3}\)

\(\dfrac{1}{x}=\dfrac{1}{6}+\dfrac{2y}{6}\)

\(\dfrac{1}{x}=\dfrac{1+2y}{6}\)

\(6=x\left(1+2y\right)\)

Tự làm típ

\(x\left(x+y\right)=\dfrac{1}{48};y\left(x+y\right)=\dfrac{1}{24}\)

\(x^2+xy=\dfrac{1}{48};xy+y^2=\dfrac{1}{24}\)

\(\Rightarrow x^2+xy-y^2-xy=\dfrac{1}{48}-\dfrac{1}{24}\)

\(x^2-y^2=\dfrac{-1}{24}\)

\(\left(x+y\right)\left(x-y\right)=\dfrac{-1}{24}\)(HĐT số 3)

Làm tips

2 tháng 4 2017

Ta có :

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.................+\dfrac{2}{n\left(n+1\right)}=\dfrac{2003}{2004}\)

\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+............+\dfrac{2}{n\left(n+1\right)}=\dfrac{2003}{2004}\)

\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+............+\dfrac{2}{2\left(n+1\right)}=\dfrac{2003}{2004}\)

\(2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{2003}{2004}\)

\(2\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{2003}{2004}\)

\(\dfrac{1}{2}-\dfrac{1}{n+1}=\dfrac{2003}{4008}\)

\(\dfrac{1}{n+1}=\dfrac{1}{4008}\)

\(\Rightarrow n+1=4008\)

\(\Rightarrow n=4007\) (Thỏa mãn \(n\in N\))

Vậy \(n=4007\) là giá trị cần tìm

~~Chúc bn học tốt~~

 

2 tháng 4 2017

hình như sai đề phải bạn ạ

6 tháng 4 2017

Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
Tương tự: \(y^2+\dfrac{1}{y^2}\ge2\)
\(z^2+\dfrac{1}{z^2}\ge2\)
Cộng vế theo vế 3 BĐT cùng chiều trên ta được:
\(x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge6\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x^2=\dfrac{1}{x^2}\\y^2=\dfrac{1}{y^2}\\z^2=\dfrac{1}{z^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\) ( Vì x,y,z nguyên dương )
Vậy các số x,y,z thỏa mãn đề bài là (x;y;z)= ( 1;1;1)

6 tháng 4 2017

Cách khác: Không sử dụng BĐT Cauchy
Pt \(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+\left(z^2+\dfrac{1}{z^2}\right)=6\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+2+\left(y-\dfrac{1}{y}\right)^2+2+\left(z-\dfrac{1}{z}\right)^2+2=6\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+\left(z-\dfrac{1}{z}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\y-\dfrac{1}{y}=0\\z-\dfrac{1}{z}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)( Vì x,y,z nguyên dương )

17 tháng 8 2017

a,\(\dfrac{x}{3}-\dfrac{1}{y}=\dfrac{1}{2}\)

=> \(\dfrac{1}{y}=\dfrac{x}{3}-\dfrac{1}{2}=>\dfrac{1}{y}=\dfrac{2x-3}{6}\)

=> y(2x-3)=6.1=6

=> y và 2x-3 là Ư (6)= {+-1,+-2,+-3,+-6}

2x-3 -1 1 2 -2 3 -3 6 -6
x 1 2 2,5 1/2 3 0 9/2 -3/2
y -6 6 3 -3 2 -2 1

-1

vậy (x;y)= .......................

b,c làm tương tự

chúc bn học tốt haha

17 tháng 8 2017

bn k thể giải ra đc ak giải ra ik mk tick cho 3 tick