Cho tam giác ABC. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh EF = BE + CF
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
8 tháng 3 2017
Vì điểm I cách đều ba cạnh của tam giác ABC và nằm trong tam giác nên I là giao điểm của ba đường phân giác của tam giác ABC, tức là BI, CI lần lượt là tia phân giác của góc N và góc C. Do EF // BC nên ∠B1= ∠I1(so le trong), suy ra ∠I2 = ∠B2 .
Suy ra: BI, CI lần lượt là tia phân giác của góc B và góc C.
Do EF // BC nên ∠B1 = ∠BIE (so le trong).
Lại có: ∠B1 = ∠B2 ( vì BI là tia phân giác của góc B )
Suy ra: ∠B2 = ∠BIE
Vậy EF = EI + IF = BE + CF.
Vì điểm I cách đều ba cạnh của tam giác ABC và nằm trong tam giác nên I là giao điểm của ba đường phân giác của tam giác ABC, tức BI, CI lần lượt là tia phân giác của góc B và góc C. Do EF // BC nên \(\widehat{B_1}=\widehat{I_1}\) (hai góc so le trong), suy ra \(\widehat{I_1}=\widehat{B_2}\). Vậy tam giác EBI cân tại E, tức là EI = EB. Tương tự ta có FI = FC.
Vậy EF = EI + IF = BE + CF.