K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Từ \(x>y>0\) ta có :

\(x>y\Rightarrow xy>y^2\). (1)

\(x>y\Rightarrow x^2>xy.\) (2)

Từ (1) và (2) suy ra \(x^2>y^2\).

\(x^2>y^2\Rightarrow x^3>xy^2.\) (3)

\(x>y\Rightarrow xy^2>y^3\). (4)

Từ (3) và (4) suy ra \(x^3>y^3.\)

27 tháng 10 2019

X^3>Y^3 vì X>Y và hai số đều có số mũ bằng nhau nên x^>y^3

27 tháng 10 2019

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì \(x>y\Rightarrow x-y>0\)

và \(x>y>0\)nên \(x^2+xy+y^2>0\)

Suy ra \(\left(x-y\right)\left(x^2+xy+y^2\right)>0\)(2)

Từ (1) và (2) suy ra \(x^3-y^3>0\)

\(\Rightarrow x^3>y^3\left(đpcm\right)\)

12 tháng 12 2015

ta có:x>y>0 =>xy>y^2 ;x>y>0=>x^2>xy

do đó x^2>y^2;từ x^2>y^2 và x>0=>x^3<xy^2;x>y>0=>xy^2>y^3

vậy x^3>xy^2>y^3 hay x^3>y^3(đpcm)

tick nhé

13 tháng 6 2017

x>y>0 => x.x.x>y.y.y>0 => x3>y3>0.

4 tháng 11 2015

x>y>0

=>x.x.x>y.y.y

=>x^3>Y^3

=>đpcm

6 tháng 10 2015

x3 = x.x.x

y3 = y.y.y

Mà x > y > 0

=> x.x.x > y.y.y

=> x3 > y3 (đpcm)

Chắc thế

8 tháng 10 2017

Từ x>y>0,ta có:

x>y =>xy>y2      (1)

x>y=>x2>xy      (2)

Từ (1) và (2) ta suy ra:x2>y2

x2>y2=>x3>xy2  (3)

x2>y2=>xy2>y3  (4)

Từ (3) và (4)=>y3<x3(đpcm)

20 tháng 11 2016

x> y > 0

=> x^3 là số dương

và y^3 cũng là số dương

mà x>y

=> x^3 > y^3

20 tháng 11 2016

\(x^3>y^3< =>x^3-y^3>0< =>\left(x-y\right)\left(x^2+y^2+xy\right)>0\)

\(< =>\left(x-y\right)\left[\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\right]>0\left(1\right)\)

Mà x>y>0 nên x-y > 0 , \(\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2>0\) với mọi x,y>0 nên (1) đúng

Vậy x3>y3

15 tháng 3 2016

cho ít phẩy y lớn hơn không chứng minh rằng hai chấm 

ít mũ ba lớn hơn y mũ ba 

15 tháng 12 2017

do x>y>0 nên x.y>y2

              x2> y.x

từ 2 điiều trên suy ra x2 >y2 tương tự như phần trên thay x=x2rồi ra thôi bạn

4 tháng 10 2019

ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0

=>a^2+b^2+c^2-ab-ac-bc=0

nhân cả 2 vế với 2 ta đc

2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0

=2x^2+2y^2+2z^2-2xy-2xz-2yz

=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0

<=> (y-x)^2+(y-z)^2+(x-z)^2=0

mà ta lại có  (y-x)^2>=0 ;  (y-z)^2>=0 ;  (x-z)^2>=0

 và (y-x)^2+(y-x)^2+(x-z)^2=0

 <=>(y-x)^2=0<=>y=x

  <=>(y-z)^2=0 <=>y=z

  <=>(x-z)^2=0<=>x=z

=>x=y=z

16 tháng 8 2017

\(x^3>y^3\)

16 tháng 8 2017

vì x>y nên \(x^3>y^{^{ }3}\)