K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

bậc của đa thức là 4 mà ax2y5 có bậc là 7

<=> a=0

8 tháng 5 2017

Đúng ko

5 tháng 3 2022

a) (5x3 + 7x2y4 + 18y2) + (2x3 - 5x2y4 - 12y2)

= 5x3 + 7x2y4 + 18y2 + 2x3 - 5x2y4 - 12y2

= 7x3 + 2x2y4 + 6y2

Bậc của đa thức là 6

Thay x = 1; y = -1 vào ta có:

7 x 13 + 2 x 12 x (-1)4 + 6 x (-1)4 = 7 x 1 + 2 x 1 x 1 + 6 x 1 = 7 + 2 + 6 = 15

b) \(\left(15x^3y-9x^2y^5+2y^4\right)-\left(18x^3y-6y^4-3x^2y^5\right)\)

\(=15x^3y-9x^2y^5+2y^4-18x^3y+6y^4+3x^2y^5\)

\(=-3x^3y-6x^2y^5+8y^4\)

Bậc của đa thức là 7

Thay x = 1; y = -1 vào ta có:

(-3) x 13 x (-1) - 6 x 12 x (-1)5 + 8 x (-1)4 = (-3) x (-1) - 6 x 1 x (-1) + 8 x 1 = 3 + 6 + 8 = 17

6 tháng 3 2022

`Answer:`

undefined

undefined

undefined

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:
$4x^5y^2-3x^3y+7x^3y+ax^5y^2=(a+4)x^5y^2+4x^3y$

Nếu $a+4\neq 0$ thì bậc của đa thức là $5+2=7$ (trái giả thiết)

Nếu $a+4=0$ thì bậc của đa thức là $3+1=4$ (thỏa mãn)

Vậy $a=-4$

a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)

\(=x^6-x^5-2x^2-x+3\)

Bậc là 6

b) Thay x=-1 và y=2018 vào A, ta được:

\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)

\(=1-\left(-1\right)-2\cdot1+1+3\)

\(=1+1-2+1+3\)

=4

10 tháng 4 2023

A(x) = ax4 - 2x3 + 3x2 - 2x4 - 7x + 1

A(x) = (ax4 - 2x4) - 2x3 + 3x2 - 2x4 - 7x + 1

A(x) = (a-2)x4 - 2x3 + 3x2 - 2x4 - 7x + 1

Vì đa thức trên có bậc là 4 nên a - 2 # 0 ⇒ a # 2

Vì a là số nguyên tố nhỏ hơn 5 nên a = 2; a =3

a = 2 (loại)

Vậy a = 3

Kết luận a = 3

 

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0

20 tháng 5 2022

`a)`

`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`

`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`

`A=5x^4y^3-2y^4+22`

        `->` Bậc: `7`

`b)B-5y^4=A`

`=>B=A+5y^4`

`=>B=5x^4y^3-2y^4+22+5y^4`

`=>B=5x^4y^3+3y^4+22`

28 tháng 1 2022

bạn có thể gõ latex đc ko

Cái biểu tượng nằm ở ngay góc trên cùng bên trái khung câu hỏi 

28 tháng 1 2022

Ta có : 

\(p=n-m=x^2y^2.xy^2z^2=x^3y^4z^2-3\left(x^2y^4z^2\right)=x^3y^4z^2-3x^2y^4z^2\)

Thay x = z = -2 ; y = -1 ta được : 

\(=-8.1.4-3.4.1.4=-32-48=-80\)

7 tháng 6 2021

\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)

\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)

\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)

b) để A+B=0 => B là số đối của A 

\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)

c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)

\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)

\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)

\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)