Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
b) (25x2y - 13xy2 + y3) - m = 11x2y - 2y3
=> m = (25x2y - 13xy2 + y3) - (11x2y - 2y3)
=> m = 25x2y - 13xy2 + y3 - 11x2y + 2y3 = 14x2y - 13xy2 + 3y3
c) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7
a,\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(< =>M=6x^2+9xy-y^2-5x^2+2xy\)
\(< =>M=x^2+11xy-y^2\)
b,\(\left(25x^2y-13xy^2+y^3\right)-M=11x^2y-2y^3\)
\(< =>M=25x^2y-13xy^2+y^3-11x^2y+2y^3\)
\(< =>M=14x^2y-12xy^2+3y^3\)
c,\(M+\left(12x^4-15x^2y+2xy^2+7\right)=0\)
\(< =>M=15x^2y-7-2xy^2-12x^4\)
câu 1: giá trị biểu thức x2-y2-2xy-5 tại x=3,y=-3 là:
A.31 B.13 C.-5 D.-23
câu 2:cho đa thức x3-x+12x7-2 có bậc là:
A.3 B.7 C.2 D.11
câu 3:biểu thức nào sau đây không là đơn thức:
A.1+x B.2xy(-x3) C.4xy3(-3x) D.1/7x2(-1/6)
câu 4: thu gọn đa thức P=-2x2y-7xy2+3x2y+7xy2là :
A.P=-5x2y-14xy2 B.x2y C.x2y+14xy2 D.y=-x2y
Ta có : \(P\left(x\right)=3x^3-2x+x^2-3x^3+2x^2+3-x\)
\(=-3x+3x^2+3\)
\(Q\left(x\right)=5x^3-x^2-5x^3+4-x^2+2x-2\)
\(=-2x^2+2+2x\)
a, Sắp xếp : \(P\left(x\right)=3x^2-3x+3\)
\(Q\left(x\right)=-2x^2+2x+2\)
b, Ta có : \(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Leftrightarrow A\left(x\right)=3x^2-3x+3-2x^2+2x+2=x^2-x+5\)
Đặt \(x^2-x-5=0\)
\(\Delta=\left(-1\right)^2-4.\left(-5\right)=1+20=21>0\)
Đag nghi vô tỉ thôi KL : vonghiem mà nếu ko phải thì check hộ bài lm tớ ... Dạo này +;- đa thức như đao ý
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
a) (5x3 + 7x2y4 + 18y2) + (2x3 - 5x2y4 - 12y2)
= 5x3 + 7x2y4 + 18y2 + 2x3 - 5x2y4 - 12y2
= 7x3 + 2x2y4 + 6y2
Bậc của đa thức là 6
Thay x = 1; y = -1 vào ta có:
7 x 13 + 2 x 12 x (-1)4 + 6 x (-1)4 = 7 x 1 + 2 x 1 x 1 + 6 x 1 = 7 + 2 + 6 = 15
b) \(\left(15x^3y-9x^2y^5+2y^4\right)-\left(18x^3y-6y^4-3x^2y^5\right)\)
\(=15x^3y-9x^2y^5+2y^4-18x^3y+6y^4+3x^2y^5\)
\(=-3x^3y-6x^2y^5+8y^4\)
Bậc của đa thức là 7
Thay x = 1; y = -1 vào ta có:
(-3) x 13 x (-1) - 6 x 12 x (-1)5 + 8 x (-1)4 = (-3) x (-1) - 6 x 1 x (-1) + 8 x 1 = 3 + 6 + 8 = 17
`Answer:`