tính m
m= căn9+4căn5 - căn9-4căn5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=\sqrt{3^2}-4\sqrt{5}-\sqrt{5}=3-5\sqrt{5}\)
\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)
\(c,\sqrt{11}-6\sqrt{2}+3+\sqrt{2}=\sqrt{11}-5\sqrt{2}+3\)
\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=3-3\sqrt{5}\)
\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)
\(\sqrt{9+4\sqrt{5}}\)
Dễ mà bạn
Dùng máy tính bỏ túi mà tính
\(A=\frac{1}{\sqrt{5+2}}-\sqrt{9+4\sqrt{5}}\)
\(A=\frac{1}{\sqrt{7}}-3+8,94427191\)
\(A=0,377964473-11,94427191\)
\(A=-11,56630744\)
Ko chắc đâu nha
\(A=1\sqrt{5}+2-\sqrt{9}+4\sqrt{5}\)
\(A=\sqrt{5}+2-3+4\sqrt{5}\)
\(A=5\sqrt{5}-1\)
Vậy \(A=5\sqrt{5}-1\)
a) Ta có: \(\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{5}-\sqrt{3}\)
c) Ta có: \(\sqrt{11-2\sqrt{30}}\)
\(=\sqrt{6-2\cdot\sqrt{6}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{6}-\sqrt{5}\right|\)
\(=\sqrt{6}-\sqrt{5}\)
d) Ta có: \(\sqrt{13-4\sqrt{3}}\)
\(=\sqrt{12-2\cdot\sqrt{12}\cdot1+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=\left|2\sqrt{3}-1\right|\)
\(=2\sqrt{3}-1\)
g) Ta có: \(\sqrt{9-2\sqrt{14}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{2}\right|\)
\(=\sqrt{7}-\sqrt{2}\)
250 mm + 100 mm= 350mm
25 mm + 3 mm= 28mm
11 mm x 3= 33mm
420 mm - 150 mm= 270mm
64 mm - 15 mm=49mm
50 mm : 2=25mm
Gọi a là cạnh đối diện góc A, tương tự đối với b và c. Gọi chiều cao tương ứng với cạnh a là ha, tương tự đối với hb và hc. Ta có ha.a=hb.b=hc.c=2S, từ ha.a=hb.b => a/b=hb/ha=65/60=13/12 => đặt a=13k (k khác 0), b=12k (k khác 0). Từ hb.b=hc.c => b/c=hc/hb=156/65=12/5 => đặt c=5k (k khác 0), nhận thấy a;b và c thỏa mãn Pytago => theo định lý Pytago đảo thì tam giác ABC vuông tại A. Giả sử AH,BK,CL là đường cao từ các đỉnh. Theo hệ thức lượng trong tam giác vuông ta có AC^2=CH.BC CH=(AC^2)/BC = 144k/13. Xét tam giác ACH có góc H=90 độ, nên áp dụng định lý Pytago ta có AH^2 + CH^2 = AC^2 => AC^2 - CH^2 = AH^2 (12k)^2 - (144k/13)^2 = 60^2, sau đó ta tính được k=13 => AB=65mm; AC=156mm => diện tích ABC = (65 x 156 )/ 2 = 5070 mm^2
Ta có: \(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+2-\sqrt{5}+2\)
=4
Ta có:
M
=
√
9
+
4
√
5
−
√
9
−
4
√
5
=
√
5
+
2
−
√
5
+
2
=4