Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=\sqrt{3^2}-4\sqrt{5}-\sqrt{5}=3-5\sqrt{5}\)
\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)
\(c,\sqrt{11}-6\sqrt{2}+3+\sqrt{2}=\sqrt{11}-5\sqrt{2}+3\)
\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=3-3\sqrt{5}\)
\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)
\(\sqrt{9+4\sqrt{5}}\)
Dễ mà bạn
Dùng máy tính bỏ túi mà tính
\(A=\frac{1}{\sqrt{5+2}}-\sqrt{9+4\sqrt{5}}\)
\(A=\frac{1}{\sqrt{7}}-3+8,94427191\)
\(A=0,377964473-11,94427191\)
\(A=-11,56630744\)
Ko chắc đâu nha
\(A=1\sqrt{5}+2-\sqrt{9}+4\sqrt{5}\)
\(A=\sqrt{5}+2-3+4\sqrt{5}\)
\(A=5\sqrt{5}-1\)
Vậy \(A=5\sqrt{5}-1\)
a) Ta có: \(\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{5}-\sqrt{3}\)
c) Ta có: \(\sqrt{11-2\sqrt{30}}\)
\(=\sqrt{6-2\cdot\sqrt{6}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{6}-\sqrt{5}\right|\)
\(=\sqrt{6}-\sqrt{5}\)
d) Ta có: \(\sqrt{13-4\sqrt{3}}\)
\(=\sqrt{12-2\cdot\sqrt{12}\cdot1+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=\left|2\sqrt{3}-1\right|\)
\(=2\sqrt{3}-1\)
g) Ta có: \(\sqrt{9-2\sqrt{14}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{2}\right|\)
\(=\sqrt{7}-\sqrt{2}\)
Ta tính BC = BH + CH = \(\frac{81}{41}+\frac{1600}{41}=\frac{1681}{41}\)
Theo hệ thức lượng trong tam giác vuông ta có AB2=BC.BH=\(\frac{1681}{41}.\frac{81}{41}=\frac{136161}{1681}=\frac{369^2}{41^2}\)
\(\Rightarrow\)AB =\(\sqrt{\frac{369^2}{41^2}}\)= \(\frac{369}{41}\)
Tương tự AC2 = BC . CH =\(\frac{1681}{41}.\frac{1600}{41}=\frac{2689600}{1681}=\frac{1640^2}{41^2}\)
\(\Rightarrow\)AC =\(\sqrt{\frac{1640^2}{41^2}}\)=\(\frac{1640}{41}\)
Giải:
a) Ta có: C = 13m, h = 3cm
Diện tích xung quanh của hình trụ là: Sxp = 2 πr.h = C.h = 13.3 = 39 cm2
b) Ta có r = 5 mm , h = 8mm
Thể tích của hình trụ là:
V = πr2h = π.52.8 = 200π ≈ 628 mm3
Ta có: \(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+2-\sqrt{5}+2\)
=4
Ta có:
M
=
√
9
+
4
√
5
−
√
9
−
4
√
5
=
√
5
+
2
−
√
5
+
2
=4