K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

Xét ΔABC vuông tại C có

\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)

2.4:

Số này không phải là số thập phân vô hạn tuần hoàn vì nó không có một quy luật nào

18 tháng 10 2021

Mình cần gấp ạ

18 tháng 10 2021

\(13,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+12-3\sqrt{3}\\ =\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\\ 14,=\dfrac{12\left(4+\sqrt{10}\right)}{6}-3\sqrt{10}+\dfrac{\sqrt{10}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\\ =8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\\ 15,=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)

\(16,=\dfrac{x+2\sqrt{x}-3-x+3\sqrt{x}-4\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ 17,=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

2:

a: ĐKXĐ: \(x\notin\left\{0;-4\right\}\)

\(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\)

\(=\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\)

\(=\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)

b: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x+1}{x-2}+\dfrac{x-2}{x+2}+\dfrac{x-14}{x^2-4}\)

\(=\dfrac{\left(x+1\right)\cdot\left(x+2\right)+\left(x-2\right)^2+x-14}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+3x+2+x^2-4x+4+x-14}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x^2-8}{x^2-4}=2\)

c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{2}{x+1}+\dfrac{-4}{1-x}+\dfrac{5x+1}{1-x^2}\)

\(=\dfrac{2}{x+1}+\dfrac{4}{x-1}-\dfrac{5x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{2x-2+4x+4-5x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)

d: ĐKXĐ: \(x\ne\pm y\)

\(\dfrac{x}{x^2+xy}+\dfrac{x-3y}{y^2-x^2}+\dfrac{x}{xy-x^2}\)

\(=\dfrac{x}{x\left(x+y\right)}-\dfrac{x-3y}{\left(x-y\right)\left(x+y\right)}-\dfrac{x}{x\left(x-y\right)}\)

\(=\dfrac{1}{x+y}-\dfrac{x-3y}{\left(x-y\right)\left(x+y\right)}-\dfrac{1}{x-y}\)

\(=\dfrac{x-y-x+3y-x-y}{\left(x-y\right)\left(x+y\right)}=\dfrac{-x+y}{\left(x-y\right)\left(x+y\right)}=\dfrac{-1}{x+y}\)

e: ĐKXĐ: \(\left\{{}\begin{matrix}x< >0\\y< >0;x\ne y\end{matrix}\right.\)

\(\dfrac{y}{x^2-xy}+\dfrac{x}{y^2-xy}\)

\(=\dfrac{y}{x\left(x-y\right)}-\dfrac{x}{y\left(x-y\right)}\)

\(=\dfrac{y^2-x^2}{xy\left(x-y\right)}=\dfrac{-\left(x-y\right)\left(x+y\right)}{xy\left(x-y\right)}=\dfrac{-x-y}{xy}\)

f: ĐKXĐ: x<>1

\(\dfrac{11x-4}{x-1}+\dfrac{10x+4}{2-2x}\)

\(=\dfrac{11x-4}{x-1}-\dfrac{5x+2}{x-1}\)

\(=\dfrac{11x-4-5x-2}{x-1}=\dfrac{6x-6}{x-1}=6\)

13 tháng 12 2020

11 c)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)

13 tháng 12 2020

12 a)  Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)

áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm ) 

b)  áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)

Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)

11 tháng 1 2023

a)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y+z}{3+5+6}=\dfrac{98}{14}=7\)

\(+)\)\(\dfrac{x}{3}=7\Rightarrow x=7\times3=21\)

\(+)\)\(\dfrac{y}{5}=7\Rightarrow y=7\times5=35\)

\(+)\)\(\dfrac{z}{6}=7\Rightarrow z=7\times6=42\)

Vậy \(x=21;y=35;z=42\)

b)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x+y-z}{4+5-2}=\dfrac{21}{7}=3\)

\(+)\)\(\dfrac{x}{4}=3\Rightarrow x=3\times4=12\)

\(+)\)\(\dfrac{y}{5}=3\Rightarrow y=3\times5=15\)

\(+)\)\(\dfrac{z}{2}=3\Rightarrow z=3\times2=6\)

Vậy \(x=12;y=15;z=6\)

c)

Ta có : 

\(x:y:z=5:\left(-6\right):7\) và \(x-y-z=16\)

\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{-6}=\dfrac{z}{7}\) và \(x-y-z=16\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{5}=\dfrac{y}{-6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-\left(-6\right)-7}=\dfrac{16}{4}=4\)

\(+)\)\(\dfrac{x}{5}=4\Rightarrow x=4\times5=20\)

\(+)\)\(\dfrac{y}{-6}=4\Rightarrow y=4\times\left(-6\right)=-24\)

\(+)\)\(\dfrac{z}{7}=4\Rightarrow z=4\times7=28\)

Vậy \(x=20;y=-24;z=28\)

d)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+z}{2+4}=\dfrac{18}{6}=3\)

\(+)\)\(\dfrac{x}{2}=3\Rightarrow x=3\times2=6\)

\(+)\)\(\dfrac{y}{3}=3\Rightarrow y=3\times3=9\)

\(+)\)\(\dfrac{z}{4}=3\Rightarrow z=3\times4=12\)

Vậy \(x=6;y=9;z=12\)

e)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y}{5-6}=\dfrac{36}{-1}=-36\)

\(+)\)\(\dfrac{x}{5}=-36\Rightarrow x=-36\times5=-180\)

\(+)\)\(\dfrac{y}{6}=-36\Rightarrow y=-36\times6=-216\)

\(+)\)\(\dfrac{z}{7}=-36\Rightarrow z=-36\times7=-252\)

Vậy \(x=-180;y=-216;z=-252\)

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y+z}{3+5+6}=\dfrac{98}{14}=7\)

=>x=21; y=35; z=42

b: x/4=y/5=z/2 và x+y-z=21

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x+y-z}{4+5-2}=\dfrac{21}{7}=3\)

=>x=12; y=15; z=6

c: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{5}=\dfrac{y}{-6}=\dfrac{z}{7}=\dfrac{x-y-z}{5+6-7}=\dfrac{16}{4}=4\)

=>x=20; y=-24; z=28

d: Áp dụng tính chất của DTSBN, ta được:

x/2=y/3=z/4=(x+z)/(2+4)=18/6=3

=>x=6; y=9; z=12