K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

\(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\3\left(x-1\right)^2+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=2y+2\\3\left(2y+2\right)+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=2y+2\\y=-\dfrac{5}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=\dfrac{8}{9}\\y=-\dfrac{5}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=\pm\dfrac{2\sqrt{2}}{3}\\y=-\dfrac{5}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\pm\dfrac{2\sqrt{2}}{3}\\y=-\dfrac{5}{9}\end{matrix}\right.\)

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

NV
2 tháng 12 2021

Hệ này không giải được em nhé

Phương trình dưới phải là:

\(...+6x\left(x+1\right)+2=0\) mới giải được

Khi đó pt dưới sẽ phân tích được thành:

\(2\left(x+1\right)^3+3\left(x+1\right)^2y+4y^3=0\)

Dạng pt đẳng cấp khá cơ bản

NV
5 tháng 12 2021

\(2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\)

\(\Leftrightarrow2\left(x^3+3x^2+3x+1\right)+3y\left(x+1\right)^2+4y^3=0\)

\(\Leftrightarrow2\left(x+1\right)^3+3\left(x+1\right)^2y+4y^3=0\)

Đặt \(x+1=a\)

\(\Rightarrow2a^3+3a^2y+4y^3=0\)

\(\Leftrightarrow\left(a+2y\right)\left(2a^2-ay+2y^2\right)=0\)

\(\Leftrightarrow\left(a+2y\right)\left(3a^2+3y^2+\left(a-y\right)^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+2y=0\\a=y=0\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow x+1+2y=0\Rightarrow x=-2y-1\)

Thế vào pt đầu:

\(\sqrt{\left(-2y-1\right)^2+2y+3}=3-2y\)

\(\Leftrightarrow\sqrt{4y^2+6y+4}=3-2y\) (\(y\le\dfrac{3}{2}\))

\(\Leftrightarrow18y=5\)

5 tháng 12 2021

OI Dzit fake mn dung hieu nham mik do la thang ban mik dp

NV
27 tháng 3 2021

a. ĐKXĐ: ..

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}-\sqrt{2\left(x+y\right)}=4\\x+2y+\dfrac{2\sqrt{\left(x+y\right)\left(2x+5y\right)}}{3}=24\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}=a\ge0\\\sqrt{2\left(x+y\right)}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{a^2+b^2}{6}+\dfrac{ab}{3}=24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left(a+b\right)^2=144\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left[{}\begin{matrix}a+b=12\\a+b=-12\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(8;4\right)\\\left(a;b\right)=\left(-4;-8\right)\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(2x+5y\right)=64\\2\left(x+y\right)=16\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
27 tháng 3 2021

b.

Thế pt trên xuống dưới:

\(x^4+6y^4=\left(x+2y\right)\left(x^3+3y^3-2xy^2\right)\)

\(\Leftrightarrow2x^3y-2x^2y^2-xy^3=0\)

\(\Leftrightarrow xy\left(2x^2-2xy-y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-\left(1+\sqrt{3}\right)x\\y=\left(-1+\sqrt{3}\right)x\end{matrix}\right.\)

Thế vào pt đầu ...

Đề cho hơi xấu, nếu pt đầu là \(x^3+3y^3-2x^2y=1\) thì đẹp hơn nhiều