Cho trước 3 đoạn thẳng có độ dài tương ứng là m, n và p. Dựng đoạn thẳng thứ tư có độ dàu q sao cho \(\dfrac{m}{n}=\dfrac{p}{q}\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Cách dựng:
- Dựng hai tia chung gốc Ox và Oy phân biệt không đối nhau
- Trên tia Ox dựng đoạn OA = m và dựng đoạn AB = n sao cho A nằm giữa O và B
- Trên tia Oy dựng đoạn OC = p.
- Dựng đường thẳng AC
- Từ B dựng đường thẳng song song với AC cắt tia Oy tại D.
Đoạn thẳng CD = q cần dựng.
* Chứng minh:
Theo cách dựng, ta có: AC // BD.
Trong △ OBD ta có: AC // BD
Chia đoạn thẳng có độ dài m ra làm 3 đoạn bằng nhau. Lấy 2 phần trong số đó, ta được đoạn thẳng có độ h cần tìm
a) Cách dựng:
- Vẽ hai tia Ox, Oy không đối nhau.
- Trên tia Oy đặt điểm B sao cho OB = 2 đơn vị.
- Lấy trung điểm của OB,
- Nối MA.
- Vẽ đường thẳng đi qua B và song song với MA cắt Ox tại C thì = ; OB = 2 OM
=> = 2
b) Cách dựng:
- Vẽ hai tia Ox và Oy không đối nhau.
- Trên tia Ox đặt hai đoạn OA= 2 đơn vị, OB= 3 đơn vị.
- Trên tia Oy đặt đoạn OB' = n
- Nối BB'
- Vẽ đường thẳng qua A song song với BB' cắt Oy tại A' và OA' = x.
Ta có: AA' // BB' => =
hay =
c) Cách dựng:
- Vẽ tia Ox, Oy không đối nhau.
- Trên tia Ox đặt đoạn OA= m, OB= n.
- Trên tia Oy đặt đoạn OB' = p.
- Vẽ đường thẳng qua A và song song với BB' cắt Oy tại A' thì OA' = x.
Thật vậy: AA' // BB' => = hay =
a)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 1 đơn vị, OB = 2 đơn vị.
+ Trên tia Oy lấy điểm M sao cho OM = m.
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại C.
Khi đó đoạn thẳng OC chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
b)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 2 đơn vị, OB = 3 đơn vị
+ Trên tia Oy lấy điểm N sao cho ON = n.
+ Vẽ đường thẳng qua A và song song với NB cắt Oy tại D.
Khi đó đoạn thẳng OD chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
c)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = n đơn vị, OB = p đơn vị
+ Trên tia Oy lấy điểm M sao cho OM = m
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại E
Khi đó đoạn thẳng OE chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
*Cách dựng (hình a):
- Dựng góc vuông xOy.
- Trên tia Ox, dựng đoạn OA = a
- Trên tia Oy, dựng đoạn OB = b.
- Nối AB, ta có đoạn AB = a 2 + b 2 cần dựng
*Chứng minh:
Áp dụng định lí Pi-ta-go vào tam giác vuông AOB, ta có:
A B 2 = O A 2 + O B 2 = a 2 + b 2
Suy ra: AB = a 2 + b 2
*Cách dựng (hình b):
- Dựng góc vuông xOy
- Trên tia Ox, dựng đoạn OA = b.
- Dựng cung tròn tâm A, bán kính bằng a cắt Oy tại B.
Ta có đoạn OB = a 2 - b 2 ( a > b ) cần dựng.
*Chứng minh:
Áp dụng định lí Pi-ta-go vào tam giác vuông AOB, ta có:
A B 2 = O A 2 + O B 2 ⇒ O B 2 = A B 2 - O A 2 ⇒ a 2 - b 2
Suy ra: OB = a 2 - b 2