K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

\(E=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\left(\dfrac{2x+3}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\dfrac{x^2+7x}{x\left(x+1\right)^2}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}\)

\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}=\dfrac{2x\left(2x+5\right)}{\left(x+1\right)\left(3x+1\right)}\)

\(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)

28 tháng 1 2021

1/ ĐKXĐ : \(x\ne1\)

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\Leftrightarrow x=\dfrac{7}{19}\left(tm\right)\)

Vậy...

b/ \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) ĐKXĐ : \(x\ne-1\)

\(\Leftrightarrow12-28x=1+x\)

\(\Leftrightarrow11=29x\Leftrightarrow x=\dfrac{11}{29}\) \(\left(tm\right)\)

Vậy....

c/ ĐKXĐ : \(x\ne0\)

\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2x^2-12=2x^2+3x\)

\(\Leftrightarrow3x=-12\Leftrightarrow x=-4\) \(\left(tm\right)\)

Vậy...

4/ ĐKXĐ : \(x\ne-\dfrac{2}{3}\)

\(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)

\(\Leftrightarrow6x^2+4x-3x-2=5\)

\(\Leftrightarrow6x^2+x-7=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=1\end{matrix}\right.\)

Vậy....

5,6 Tương tự nhé !

 

 

1)ĐKXĐ: \(x\ne1\)

Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-9-2x+2=0\)

\(\Leftrightarrow19x-7=0\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\dfrac{7}{19}\)(nhận)

Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)

2) ĐKXĐ: \(x\ne-1\)

Ta có: \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)

\(\Leftrightarrow4\left(3-7x\right)=x+1\)

\(\Leftrightarrow12-28x-x-1=0\)

\(\Leftrightarrow-29x+11=0\)

\(\Leftrightarrow-29x=-11\)

\(\Leftrightarrow x=\dfrac{11}{29}\)

Vậy: \(S=\left\{\dfrac{11}{29}\right\}\)

3) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-12=2x^2+6x\)

\(\Leftrightarrow2x^2-12-2x^2-6x=0\)

\(\Leftrightarrow-6x-12=0\)

\(\Leftrightarrow-6x=12\)

\(\Leftrightarrow x=-2\)

Vậy: S={-2}

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

5 tháng 1 2022

\(a,\dfrac{3x+21}{x^2-9}+\dfrac{2}{x+3}-\dfrac{3}{x-3}\\ =\dfrac{3x+21}{\left(x-3\right)\left(x+3\right)}+\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+21}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}-\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+21+2x-6-3x-9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2}{x-3}\)

\(b,\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\\ =\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x+3}{x^2-1}\\ =\dfrac{3x^2+4x+1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{3x^2+4x+1-x^2+2x-1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x^2+2x-3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{2x^2+6x-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{\left(x^2+3x\right)+\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x\left(x+3\right)+\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x+3}{\left(x-1\right)^2}\)

a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)

b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)

\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)

\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)

\(\Leftrightarrow x\left(6-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: S={0;6}

c) Ta có: \(3x-15=2x\left(x-5\right)\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)

d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)

\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)

\(\Leftrightarrow30-6x=6x-8\)

\(\Leftrightarrow30-6x-6x+8=0\)

\(\Leftrightarrow-12x+38=0\)

\(\Leftrightarrow-12x=-38\)

\(\Leftrightarrow x=\dfrac{19}{6}\)

Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)

e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)

\(\Leftrightarrow6x+4-3x-1=12x+10\)

\(\Leftrightarrow3x+3-12x-10=0\)

\(\Leftrightarrow-9x-7=0\)

\(\Leftrightarrow-9x=7\)

\(\Leftrightarrow x=-\dfrac{7}{9}\)

Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)

4 tháng 2 2022

\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\dfrac{4x^2+4x+1}{5}-\dfrac{x^2-2x+1}{3}=\dfrac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\dfrac{12x^2+12x+3}{15}-\dfrac{5x^2-10x+5}{15}=\dfrac{7x^2-14x-5}{15}\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)

\(\Leftrightarrow36x=-3\)

\(\Leftrightarrow x=-\dfrac{1}{12}\)

4 tháng 2 2022

\(k.x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x-\dfrac{1-2x}{3}}{5}\)

\(\Leftrightarrow\dfrac{15x}{15}+\dfrac{10x+x-1}{15}=\dfrac{15}{15}-\dfrac{9x-1+2x}{15}\)

\(\Leftrightarrow15x+9x-1=14-7x\)

\(\Leftrightarrow31x=15\)

\(\Leftrightarrow x=\dfrac{15}{31}\)

22 tháng 4 2017

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

31 tháng 5 2017

ĐKXĐ: \(x\ne\pm3,x\ne\dfrac{9}{2}\)

= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{2x-9}.\dfrac{3\left(x-3\right)-x}{x\left(x-3\right)}\right]\) : \(\dfrac{x^2-5x-6}{-2\left(x-3\right)\left(x+3\right)}\)

= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x-3}\right]:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)

= \(\dfrac{x\left(x+3\right)-2x^2+2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)

= \(\dfrac{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}=1\)