\(\dfrac{3x+21}{x^2-9}+\dfrac{2}{x+3}-\dfrac{3}{x-3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

\(a,\dfrac{3x+21}{x^2-9}+\dfrac{2}{x+3}-\dfrac{3}{x-3}\\ =\dfrac{3x+21}{\left(x-3\right)\left(x+3\right)}+\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+21}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}-\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+21+2x-6-3x-9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2}{x-3}\)

\(b,\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\\ =\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x+3}{x^2-1}\\ =\dfrac{3x^2+4x+1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{3x^2+4x+1-x^2+2x-1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x^2+2x-3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{2x^2+6x-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{\left(x^2+3x\right)+\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x\left(x+3\right)+\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x+3}{\left(x-1\right)^2}\)

3 tháng 5 2017

\(E=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\left(\dfrac{2x+3}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\dfrac{x^2+7x}{x\left(x+1\right)^2}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}\)

\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}=\dfrac{2x\left(2x+5\right)}{\left(x+1\right)\left(3x+1\right)}\)

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

\(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)

17 tháng 7 2017

Nguyễn Huy Tú :v

17 tháng 7 2017

a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)

đkxđ: x khác 3, x khác -3

(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)

=>3x+9 -6x + x2+3x

<=>x2 + 3x-6x+3x + 9

<=>x2 +9

<=>(x-3).(x+3)

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)

\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)

\(=\dfrac{3}{x-3}\)

b: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>x=-3(loại) hoặc x=2(nhận)

Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)

c: Để B=-3/5 thì x-3=-5

=>x=-2(loại)

d: Để B<0 thì x-3<0

=>x<3

29 tháng 11 2022

a: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)

\(=\dfrac{-16}{16\left(x^2+x+1\right)}\cdot\left(x+1\right)=-\dfrac{x+1}{x^2+x+1}\)

b: \(B=\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x+2}{x^2+x+1}\)

\(P=A+B=\dfrac{-x-1+x+2}{x^2+x+1}=\dfrac{1}{x^2+x+1}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< =1:\dfrac{3}{4}=\dfrac{4}{3}\)

Dấu = xảy ra khi x=-1/2

22 tháng 7 2017

a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)

\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{-1}{2}\)

b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)

\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=-\dfrac{3}{x-3}\)

10 tháng 2 2019

a. \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{9}{x^2-9}\) (ĐKXĐ: \(x\ne\pm3\))

\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=9\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=9\)

\(\Leftrightarrow12x=9\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

\(\Rightarrow S=\left\{\dfrac{3}{4}\right\}\)

b. \(\dfrac{x+2}{4}-x+3=\dfrac{1-x}{8}\)

\(\Leftrightarrow2\left(x+2\right)-8\left(x-3\right)=1-x\)

\(\Leftrightarrow2x+4-8x+24=1-x\)

\(\Leftrightarrow2x-8x+x=1-4-24\)

\(\Leftrightarrow-3x=-27\Leftrightarrow x=9\)

\(\Rightarrow S=\left\{9\right\}\)

-Mệt -.-