K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

8 tháng 5 2017

Câu a :

Chưa nghĩ ra! Sorry nhé!!

Câu b :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Câu c :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Vào link đó mà xem, t ngại chép lại

14 tháng 3 2023

Để chứng minh 3<S<6, ta cần tính giá trị của biểu thức S và thấy xem nó có nằm trong khoảng (3, 6) hay không.

Đầu tiên, ta tính tổng S bằng cách đặt S bên cạnh tổng harmonic thứ 63, rồi trừ đi tổng harmonic thứ 62:

S = 1/1 + 1/2 + 1/3 + ... + 1/63 S - 1/2 = 1/2 + 1/3 + ... + 1/63

Lặp lại phương pháp trên đối với S - 1/2, ta có:

S - 1/2 - 1/3 = 1/3 + ... + 1/63

Cứ lặp lại phương pháp trên đến khi ta được:

S - 1/2 - 1/3 - ... - 1/62 = 1/63

Tổng quát lại, ta có:

S - 1/2 - 1/3 - ... - 1/62 - 1/63 = 0

Từ đây suy ra:

3/2 < 1/2 + 1/3 + ... + 1/62 + 1/63 < 1 + 1/2 + 1/3 + ... + 1/62 < 6

Vì vậy, ta có:

3 < S < 6

Vậy, ta đã chứng minh được rằng 3<S<6.

5 tháng 5 2021

Dễ quá

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

$A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{99.100}$

$A< \frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}$

$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$

$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{1}{4}+\frac{1}{2}$
Hay $A< \frac{3}{4}$

27 tháng 7 2021

a) Gọi ƯCLN(12n+1,30n+2) là d

12n+1⋮d  ⇒ 60n+5⋮d 

30n+2⋮d  ⇒ 60n+4⋮d 

(60n+5)-(60n+4)⋮d 

1⋮d 

Vậy \(\dfrac{12n+1}{30n+2}\) là ps tối giản

27 tháng 7 2021

b) Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)

16 tháng 4 2017

a) Giải:

Ta có: \(4n-5=4\left(n-3\right)+7\)

Để \(\left(4n-5\right)⋮\left(n-3\right)\Leftrightarrow7⋮n-3\)

\(\Rightarrow n-3\inƯ\left(7\right)\)

\(Ư\left(7\right)\in\left\{\pm1;\pm7\right\}\)

Nên ta có bảng sau:

\(n-3\) \(n\)
\(1\) \(4\)
\(-1\) \(2\)
\(-7\) \(-4\)
\(7\) \(10\)

Vậy \(n=\left\{2;4;-4;10\right\}\)

b) Ta có:

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét:

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)