K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

đặt x2 + 16x + 60 = t thì PT đã cho trở thành :

t ( t + x ) - 6x2 = 0 \(\Leftrightarrow\)t2 + xt - 6x2 = 0

\(\Leftrightarrow\)( t - 2x ) ( t + 3x ) = 0 \(\Leftrightarrow\)\(\orbr{\begin{cases}t=2x\\t=-3x\end{cases}}\)

+) t = 2x thì x2 + 16x + 60 = 2x \(\Leftrightarrow\)x2 + 14x +  60 = 0 ( vô nghiệm )

+) t = -3x thì x2 + 16x + 60 = -3x \(\Leftrightarrow\)x2 + 19x + 60 = 0 

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-4\\x=-15\end{cases}}\)

Vậy ....

10 tháng 2 2019

addatwj ẩn phụ

10 tháng 2 2019

Phương trình tương đương với: \(\left(x^2+16x+60\right)\left(x^2+17x+60\right)-6x^2=0.\)

Đặt \(a=x^2+16x+60,\)phương trình trở thành:

\(a\left(a+x\right)-6x^2=0\)

\(\Leftrightarrow a^2+ax-6x^2=0\)

\(\Leftrightarrow\left(a-2x\right)\left(a+3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2x=0\\a+3x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+14x+60=0\\x^2+19x+60=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot7\cdot x+7^2-7^2+60=0\\\left(x+4\right)\left(x+15\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+7\right)^2+11=0\left(VL\right)\\\left(x+4\right)\left(x+15\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+15=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-15\end{cases}\left(TM\right).}\)

Vậy tập nghiệm phương trình là S = {-15;-4}.

27 tháng 2 2022

BÀI 1. Giải các phương trình sau bằng công thức nghiệm hoặc  (công thức nghiện thu gọn).

1) x2 - 11x + 38 = 0 ;

2) 6x2 + 71x + 175 = 0 ;

3) 5x2 - 6x + 27 =0 ;

4) - 30x2 + 30x - 7,5 = 0 ;

5) 4x2 - 16x + 17 = 0 ;

6) x2 + 4x - 12 = 0 ;

27 tháng 2 2022

Được chưa bạn?

5 tháng 8 2019

2x3 + 6x2 = x2 + 3x

⇔ (2x3 + 6x2) – (x2 + 3x) = 0

⇔ 2x2(x + 3) – x(x + 3) = 0

⇔ x(x + 3)(2x – 1) = 0

(Nhân tử chung là x(x + 3))

⇔ x = 0 hoặc x + 3 = 0 hoặc 2x – 1 = 0

+ x + 3 = 0 ⇔ x = -3.

+ 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

Vậy tập nghiệm của phương trình là Giải bài 25 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

3 tháng 4 2018

1) Dễ thấy x= 0 không là nghiệm của phương trình nên

P T ⇔ x + 1 x − 1 x + 1 x + 4 = 6  

Đặt  t = x + 1 x ta được  t − 1 t + 4 = 6 ⇔ t 2 + 3 t − 10 = 0 ⇔ t = 2 t = − 5  

Với  t = 2 ⇒ x + 1 x = 2 ⇔ x 2 − 2 x + 1 = 0 ⇔ x = 1  

Với  t = − 5 ⇒ x + 1 x = − 5 ⇔ x 2 + 5 x + 1 = 0 ⇔ x = − 5 − 21 2 x = − 5 + 21 2  

 

2 tháng 11 2017

2x2 – 17x + 1 = 0

Có a = 2; b = -17; c = 1

Δ = b2 – 4ac = (-17)2 – 4.2.1 = 281 > 0.

Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:

    x1 + x2 = -b/a = 17/2

    x1.x2 = c/a = 1/2.

6 tháng 8 2021

6x2-3xy+17x-4y+5=0

⇔ -3xy-4y=-6x2-17x-5

⇔ 3xy+4y=6x2+17x+5

⇔ y(3x+4)=6x2+17x+5

6x2+17x+5 ⋮ 3x-4 vì x, y ∈ Z

⇔ 6x2+17x+12-7 ⋮ 3x+4

⇔ 6x2+8x+9x+12-7 ⋮ 3x+4

⇔ 2x(3x+4)+3(3x+4)-7 ⋮ 3x+4

=> 7 ⋮ 3x+4

=> 3x+4 ∈ Ư(7)={-1,1,-7,7}

3x+4=1 ⇔ x=-1 (lấy)

3x+4=-1 ⇔ x=\(\dfrac{-5}{3}\) (loại)

3x+4=-7 ⇔ x=\(\dfrac{-11}{3}\)(loại)

3x+4=7 ⇔ x=1 (lấy)

thay vào tính thì y={-6,4} (bạn tự làm nhá)

vậy (x,y)={(-1,1),(-6,4)}

 

 

 

 
1 tháng 3 2023

`2x^3 +6x^2 =x^2 +3x`

`<=> 2x^3 +6x^2 -x^2 -3x=0`

`<=> 2x^3 +5x^2 -3x=0`

`<=> x(2x^2 +5x-3)=0`

`<=> x(2x^2 +6x-x-3)=0`

`<=> x[2x(x+3)-(x+3)]=0`

`<=> x(2x-1)(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-1=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

b)

`(2+x)^2 -(2x-5)^2=0`

`<=> (2+x-2x+5)(2+x+2x-5)=0`

`<=> (-x+7)(3x-3)=0`

\(< =>\left[{}\begin{matrix}-x+7=0\\3x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

1 tháng 3 2023

`a) 2x^3 + 6x^2 = x^2 + 3x`

`=> 2x^3 + 6x^2 - x^2 - 3x = 0`

`=> 2x^3 + 5x^2 - 3x = 0`

`=> x(2x^2 + 5x - 3) = 0`

`=> x (2x^2 + 6x - x - 3) = 0`

`=> x [(2x^2 + 6x) - (x+3)] = 0`

`=> x [2x(x+3) - (x+3)] = 0`

`=> x (2x - 1)(x+3) = 0`

`=> x = 0` hoặc `2x - 1 = 0` hoặc `x + 3 = 0`

`=> x = 0` hoặc `x = 1/2` hoặc `x = -3`

`b) (2+x)^2 - (2x-5)^2 = 0`

`=> (2+x+2x-5)(2+x-2x+5) = 0`

`=> (3x - 3)(7-x) = 0`

`=> 3x - 3 = 0` hoặc `7 - x = 0`

`=> x = 1` hoặc `x = 7`

 

20 tháng 12 2017

a)  2 x 2   –   17 x   +   1   =   0

Có a = 2; b = -17; c = 1

Δ   =   b 2   –   4 a c   =   ( - 17 ) 2   –   4 . 2 . 1   =   281   >   0 .

Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 17 / 2 x 1 x 2 = c / a = 1 / 2

b)  5 x 2   –   x   –   35   =   0

Có a = 5 ; b = -1 ; c = -35 ;

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 5 . ( - 35 )   =   701   >   0

Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 1 / 5 x 1 ⋅ x 2 = c / a = − 35 / 5 = − 7

c)  8 x 2   –   x   +   1   =   0

Có a = 8 ; b = -1 ; c = 1

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 8 . 1   =   - 31   <   0

Phương trình vô nghiệm nên không tồn tại x1 ; x2.

d)  25 x 2   +   10 x   +   1   =   0

Có a = 25 ; b = 10 ; c = 1

Δ   =   b 2   –   4 a c   =   10 2   –   4 . 25 . 1   =   0

Khi đó theo hệ thức Vi-et có:

x 1 + x 2 = − b / a = − 10 / 25 = − 2 / 5 x 1 x 2 = c / a = 1 / 25