Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (x2 - 4) + (x + 2)(3 - 2x) = 0
=> (x - 2)(x + 2) + (x + 2)(3 - 2x) = 0
=> (x + 2)(x - 2 + 3 - 2x) = 0
=> (x + 2)(1 - x) = 0
=> x + 2 = 0 => x = -2
hoặc 1 - x = 0 => x = 1
b/ 2x3 + 6x2 = x2 + 3x
=> 2x3 + 5x2 - 3x = 0
=> x.(2x2 + 5x - 3) = 0
=> x = 0
hoặc 2x2 + 5x - 3 = 0 => (2x - 1)(x + 3) = 0
=> 2x - 1 = 0 => x = 1/2
hoặc x + 3 = 0 => x = -3
Vậy x = 0 , x = 1/2 , x = -3
c/ (2x - 5)2 = (x + 2)2
=> (2x - 5)2 - (x + 2)2 = 0
=> (2x - 5 + x + 2).(2x - 5 - x - 2) = 0
=> (3x - 3).(x - 7) = 0
=> 3x - 3 = 0 => 3x = 3 => x = 1
hoặc x - 7 = 0 => x = 7
Vậy x = 1 , x = 7
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
b/ (12x + 7)2(3x + 2)(2x + 1) = 3
=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3
- Nhân 2 vế cho 24 ta đc:
(144x2 + 168x + 49) (144x2 + 168x + 48) = 72
- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a + 9)(a - 8) = 0
=> a = -9 hoặc a = 8
- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm
- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6
Vậy x = -1/3 , x = -5/6
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)
\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow2x=0+3\)
\(\Leftrightarrow2x=3\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy....
(x2-4) + (x+2)(3-2x) = 0
<=> (x-2)(x+2) + (x+2)(3-2x) = 0
<=> (x+2) ( x-2 + 3-2x) = 0
<=> (x+2) ( -x+1)=0
<=> x+2=0 hoặc -x+1=0
<=> x=-2 hoặc x=1
Vậy...
2x3 + 6x2 = x2 + 3x
<=> 2x3 + 6x2 - x2 - 3x = 0
<=> 2x2.(x + 3) - x.(x + 3) = 0
<=> (x+3) . (2x2-x) = 0
<=> x.(x+3) . (2x - 1)=0
<=> x=0 hoặc x+3=0 hoặc 2x-1=0
<=> x=0 hoặc x=-3 hoặc x=1/2
Vậy...
(2x-5)2=(x+2)2
<=> (2x-5)2-(x+2)2=0
<=> (2x-5+x+2)(2x-5-x-2)=0
<=> (3x-3)(x-7)=0
<=> 3.(x-1)(x-7)=0
<=> x-1=0 hoặc x-7=0
<=> x=1 hoặc x=7
Vậy...
a) Ta có: (2x-3)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-2\right\}\)
b) Ta có: (3x-1)(2x-5)=(3x-1)(x+2)
⇔\(\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[\left(2x-5\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{3};7\right\}\)
c) Ta có: \(\left(x^2-25\right)+\left(x-5\right)\left(2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\left(x-5\right)\left(2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5+2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\cdot3\cdot\left(x-2\right)=0\)
mà 3≠0
nên \(\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: x∈{5;2}
d) Ta có: \(\left(x^2-6x+9\right)-4=0\)
\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vậy: x∈{5;1}
e) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;1;\frac{3}{2}\right\}\)
a, Đặt \(2^x=t,t>0\)
Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)
Nếu t=2 => x=1
nếu t=8=> x=3
Vậy x=...
b, Đặt: \(2x^2-3x-1=t\)
pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)
* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
Vậy x=...
a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)
TH1:=>x-2=0
=>x=2
TH2:x+3=0
=>x=-3
dựa vô bệt thức ta thấy
D<0=> phương trình ko có nghiệm thực
=>x=-3 hoặc 2
nhớ tick nhé
Giải phương trình:
a) (x+2)3 - (x-2)3 = 12x(x-1) - 8
<=> (x2 + 3.x2.2 + 3.x.22 + 23) - (x2 - 3.x2.2 + 3.x.22 - 23) - [12x(x-1) - 8] = 0
<=> (x3 + 6x2 + 12x + 8) - (x3 - 6x2 + 12x - 8) - (12x2 - 12x - 8) = 0
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0
<=> 12x +32 = 0
<=> x = −3212 = −223
Vậy phương trình có nghiệm duy nhất là −223
b) (3x-1)2 - 5(2x+1)2 + (6x-3)(2x+1) = (x-1)2
<=> (9x2 - 6x + 1) - 5(4x2 + 4x + 1) + 3(2x - 1)(2x + 1) - (x2 - 2x +1) = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x -1 = 0
<=> -24x - 8 = 0
<=> x = −824 = −13
Vậy phương trình có nghiệm duy nhất là −13
bạn tự điền mấy cái dấu gạch p/s nhé
________________________________
_chúc bạn học tốt_
1, a,\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=-\dfrac{5}{2}\) hoặc \(x=3\)
b, \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\left(x-2\right)\left(3x-1\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=\dfrac{1}{3}\)
c, \(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
Áp dụng hằng đẳng thức hiệu hai bình phương để suy ra:
\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=-\dfrac{7}{3}\) hoặc \(x=-3\)
d, \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-4x+4-x+2=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=3\)
e, \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=0\) hoặc \(x=\dfrac{1}{2}\) hoặc \(x=-3\)
CHÚC BẠN HỌC GIỎI.................
`2x^3 +6x^2 =x^2 +3x`
`<=> 2x^3 +6x^2 -x^2 -3x=0`
`<=> 2x^3 +5x^2 -3x=0`
`<=> x(2x^2 +5x-3)=0`
`<=> x(2x^2 +6x-x-3)=0`
`<=> x[2x(x+3)-(x+3)]=0`
`<=> x(2x-1)(x+3)=0`
\(< =>\left[{}\begin{matrix}x=0\\2x-1=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
b)
`(2+x)^2 -(2x-5)^2=0`
`<=> (2+x-2x+5)(2+x+2x-5)=0`
`<=> (-x+7)(3x-3)=0`
\(< =>\left[{}\begin{matrix}-x+7=0\\3x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
`a) 2x^3 + 6x^2 = x^2 + 3x`
`=> 2x^3 + 6x^2 - x^2 - 3x = 0`
`=> 2x^3 + 5x^2 - 3x = 0`
`=> x(2x^2 + 5x - 3) = 0`
`=> x (2x^2 + 6x - x - 3) = 0`
`=> x [(2x^2 + 6x) - (x+3)] = 0`
`=> x [2x(x+3) - (x+3)] = 0`
`=> x (2x - 1)(x+3) = 0`
`=> x = 0` hoặc `2x - 1 = 0` hoặc `x + 3 = 0`
`=> x = 0` hoặc `x = 1/2` hoặc `x = -3`
`b) (2+x)^2 - (2x-5)^2 = 0`
`=> (2+x+2x-5)(2+x-2x+5) = 0`
`=> (3x - 3)(7-x) = 0`
`=> 3x - 3 = 0` hoặc `7 - x = 0`
`=> x = 1` hoặc `x = 7`