Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x2 + 16x + 60 = t thì PT đã cho trở thành :
t ( t + x ) - 6x2 = 0 \(\Leftrightarrow\)t2 + xt - 6x2 = 0
\(\Leftrightarrow\)( t - 2x ) ( t + 3x ) = 0 \(\Leftrightarrow\)\(\orbr{\begin{cases}t=2x\\t=-3x\end{cases}}\)
+) t = 2x thì x2 + 16x + 60 = 2x \(\Leftrightarrow\)x2 + 14x + 60 = 0 ( vô nghiệm )
+) t = -3x thì x2 + 16x + 60 = -3x \(\Leftrightarrow\)x2 + 19x + 60 = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-4\\x=-15\end{cases}}\)
Vậy ....
\(pt\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x+2}-2\sqrt{x}\right)=0\)
hình như đề bài sai..mk thấy vế trái của cả 2 pt nó chả khác j nhau cả
a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)
Theo bất đẳng thức Cô-Si cho 4 số ta được
\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)
Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).
Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\)
b. Ta viết phương trình dưới dạng sau đây \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)
Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.
\(\hept{\begin{cases}\left(x+1\right)\left(2y+3\right)=5\\\left(x+2\right)\left(3y-1\right)=-4\end{cases}\Rightarrow x+1=\frac{5}{2y+3}\Leftrightarrow x+2=\frac{8+2y}{2y+3}}\)
\(\Leftrightarrow\left(x+2\right)\left(3y-1\right)=\left(\frac{8+2y}{2y+3}\right)\left(3y-1\right)=-4\)
\(\Leftrightarrow\left(8+2y\right)\left(3y-1\right)=-8y-12\\ \Leftrightarrow6y^2+30y+4=0\)
\(\Rightarrow\orbr{\begin{cases}y=\frac{-15+\sqrt{201}}{6}\\y=\frac{-15-\sqrt{201}}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-83-5\sqrt{201}}{8}\\x=\frac{-83+5\sqrt{201}}{8}\end{cases}}\)
cảm ơn nha! mk bt cách làm rùi nhưng mà bạn tính x sai mất rùi! dù sao cũng camon nhìu lắm!!! ^ ^
addatwj ẩn phụ
Phương trình tương đương với: \(\left(x^2+16x+60\right)\left(x^2+17x+60\right)-6x^2=0.\)
Đặt \(a=x^2+16x+60,\)phương trình trở thành:
\(a\left(a+x\right)-6x^2=0\)
\(\Leftrightarrow a^2+ax-6x^2=0\)
\(\Leftrightarrow\left(a-2x\right)\left(a+3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-2x=0\\a+3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+14x+60=0\\x^2+19x+60=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot7\cdot x+7^2-7^2+60=0\\\left(x+4\right)\left(x+15\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+7\right)^2+11=0\left(VL\right)\\\left(x+4\right)\left(x+15\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+15=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-15\end{cases}\left(TM\right).}\)
Vậy tập nghiệm phương trình là S = {-15;-4}.