Cho hình vuông ABCD. Trên cạnh DC lấy điểm E, trên cạnh BC láy điểm F sao cho DE = CF.
Chứng minh rằng AE = DF và \(AE\perp DF\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ ADE và ∆ DCF:
AD = DC (gt)
∠ A = ∠ D = 90 °
DE = CF (gt)
Do đó: ∆ ADE = ∆ DCF (c.g.c)
⇒ AE = DF
∠ (EAD) = ∠ (FDC)
∠ (EAD) + ∠ (DEA) = 90 ° (vì ΔADE vuông tại A)
⇒ ∠ (FDC) + ∠ (DEA) = 90 °
Gọi I là giao điểm của AE và DF.
Suy ra: ∠ (IDE) + ∠ (DEI) = 90 °
Trong ∆ DEI ta có: ∠ (DIE) = 180 ° – ( ∠ (IDE) + ∠ (DEI) ) = 180 ° – 90 ° = 90 °
Suy ra: AE ⊥ DF
Xét ∆ ABF và ∆ DAE,ta có: AB = DA (gt)
∠ (BAF) = ∠ (ADE) = 90 0
AF = DE (gt)
Suy ra: ΔABF = ΔDAE (c.g.c)
⇒ BF = AE và ∠ B 1 = ∠ A 1
Gọi H là giao điểm của AE và BF.
Ta có: ∠ (BAF) = ∠ A 1 + ∠ A 2 = 90 0
Suy ra: ∠ B 1 + ∠ A 2 = 90 0
Trong ΔABH,ta có: ∠ (AHB) + ∠ B 1 + ∠ A 2 = 180 0
⇒ ( ∠ (AHB) ) = 180 0 – ( ∠ B 1 + ∠ A 2 ) = 180 0 – 90 0 = 90 0
Vậy AE ⊥ BF
Gợi í:)
•Chứng minh cho nó bằng 900 (hoặc đường trung tuyến đồng thời là đường phân giác)
a) Xét tam giác ABD và EBD có:
- AB=BE (gt)
- góc ABD = góc EBD ( BD là phân giác góc B)
- Chung cạnh BD
=> Tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE ( 2 cạnh tương ứng)
a: góc FEB+góc FBE=45+45=90 độ
=>EF vuông góc BC
b: ΔDFC vuông tại F có góc C=45 độ
nên ΔDFC vuông cân tại F
=>FD=FC
c: Xét ΔBEC có
EF,CA là đường cao
EF cắt CA tại D
=>D là trực tâm
=>BD vuông góc CE
\(\Delta ADE=\Delta DCF\left(c-g-c\right)\), suy ra AE = DF và \(\widehat{DAE}=\widehat{CDF}.\)
Ta lại có \(\widehat{CDF}+\widehat{ADF}=90^o\) nên \(\widehat{DAE}+\widehat{ADF}=90^o.\) Do đó
AE \(\perp\) DF.