Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ADE=\Delta DCF\left(c-g-c\right)\), suy ra AE = DF và \(\widehat{DAE}=\widehat{CDF}.\)
Ta lại có \(\widehat{CDF}+\widehat{ADF}=90^o\) nên \(\widehat{DAE}+\widehat{ADF}=90^o.\) Do đó
AE \(\perp\) DF.
Xét ∆ ABF và ∆ DAE,ta có: AB = DA (gt)
∠ (BAF) = ∠ (ADE) = 90 0
AF = DE (gt)
Suy ra: ΔABF = ΔDAE (c.g.c)
⇒ BF = AE và ∠ B 1 = ∠ A 1
Gọi H là giao điểm của AE và BF.
Ta có: ∠ (BAF) = ∠ A 1 + ∠ A 2 = 90 0
Suy ra: ∠ B 1 + ∠ A 2 = 90 0
Trong ΔABH,ta có: ∠ (AHB) + ∠ B 1 + ∠ A 2 = 180 0
⇒ ( ∠ (AHB) ) = 180 0 – ( ∠ B 1 + ∠ A 2 ) = 180 0 – 90 0 = 90 0
Vậy AE ⊥ BF
Gợi í:)
•Chứng minh cho nó bằng 900 (hoặc đường trung tuyến đồng thời là đường phân giác)
a: Xét ΔAED vuông tại A và ΔDFC vuông tại D có
AD=DC
AE=DF
=>ΔAED=ΔDFC
=>FC=DE
b: Xét tứ giác DQPF có
I là trung điểm chung của DP và QF
DP vuông góc DF
=>DQPF là hình thoi
a: Sửa đề: ΔAEF vuông cân tại A
Xét ΔADF vuông tại D và ΔABE vuông tại B có
AD=AB
DF=BE
Do đó: ΔADF=ΔABE
=>AF=AE và \(\widehat{DAF}=\widehat{BAE}\)
mà \(\widehat{BAE}+\widehat{DAE}=90^0\)
nên \(\widehat{DAF}+\widehat{DAE}=90^0\)
=>\(\widehat{FAE}=90^0\)
Xét ΔAEF có \(\widehat{FAE}=90^0\) và AE=AF
nên ΔAEF vuông cân tại A
b: Gọi giao điểm của AH với EF là M
H đối xứng A qua EF
=>EF là đường trung trực của HA
=>EH=EA và FH=FA
mà AH=AE
nên EH=EA=FH=FA
Xét tứ giác AEHF có
AE=HE=HF=FA
nên AEHF là hình thoi
Hình thoi AEHF có \(\widehat{FAE}=90^0\)
nên AEHF là hình vuông
Xét ∆ ADE và ∆ DCF:
AD = DC (gt)
∠ A = ∠ D = 90 °
DE = CF (gt)
Do đó: ∆ ADE = ∆ DCF (c.g.c)
⇒ AE = DF
∠ (EAD) = ∠ (FDC)
∠ (EAD) + ∠ (DEA) = 90 ° (vì ΔADE vuông tại A)
⇒ ∠ (FDC) + ∠ (DEA) = 90 °
Gọi I là giao điểm của AE và DF.
Suy ra: ∠ (IDE) + ∠ (DEI) = 90 °
Trong ∆ DEI ta có: ∠ (DIE) = 180 ° – ( ∠ (IDE) + ∠ (DEI) ) = 180 ° – 90 ° = 90 °
Suy ra: AE ⊥ DF