K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ ADE và  ∆ DCF:

AD = DC (gt)

∠ A = ∠ D = 90 °

DE = CF (gt)

Do đó:  ∆ ADE = DCF (c.g.c)

⇒ AE = DF

(EAD) = (FDC)

∠ (EAD) +  ∠ (DEA) =  90 °  (vì ΔADE vuông tại A)

⇒ ∠ (FDC) +  ∠ (DEA) =  90 °

Gọi I là giao điểm của AE và DF.

Suy ra:  ∠ (IDE) +  ∠ (DEI) =  90 °

Trong  ∆ DEI ta có:  ∠ (DIE) =  180 °  – ( ∠ (IDE) +  ∠ (DEI) ) =  180 °  –  90 °  =  90 °

Suy ra: AE ⊥ DF

30 tháng 5 2017

A B C D E F

\(\Delta ADE=\Delta DCF\left(c-g-c\right)\), suy ra AE = DF và \(\widehat{DAE}=\widehat{CDF}.\)

Ta lại có \(\widehat{CDF}+\widehat{ADF}=90^o\) nên \(\widehat{DAE}+\widehat{ADF}=90^o.\) Do đó

AE \(\perp\) DF.

30 tháng 6 2017

Hình vuông

23 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ ABF và  ∆ DAE,ta có: AB = DA (gt)

∠ (BAF) =  ∠ (ADE) = 90 0

AF = DE (gt)

Suy ra: ΔABF = ΔDAE (c.g.c)

⇒ BF = AE và ∠ B 1 ∠ A 1

Gọi H là giao điểm của AE và BF.

Ta có:  ∠ (BAF) =  ∠ A 1 + ∠ A 2 90 0

Suy ra: B 1 +  ∠ A 2  =  90 0

Trong ΔABH,ta có:  ∠ (AHB) +  ∠ B 1 +  ∠ A 2  =  180 0

⇒ ( ∠ (AHB) ) =  180 0  – ( ∠ B 1 +  ∠ A 2  ) =  180 0  –  90 0  =  90 0

Vậy AE ⊥ BF

30 tháng 6 2017

Hình vuông

Gợi í:)

•Chứng minh cho nó bằng 900 (hoặc đường trung tuyến đồng thời là đường phân giác)

19 tháng 1 2022

-Cái nào bằng 900 vậy bạn :)?

22 tháng 10 2021

Đề bài yêu cầu gì?

a: Xét ΔAED vuông tại A và ΔDFC vuông tại D có

AD=DC

AE=DF

=>ΔAED=ΔDFC

=>FC=DE

b: Xét tứ giác DQPF có

I là trung điểm chung của DP và QF

DP vuông góc DF

=>DQPF là hình thoi

10 tháng 11 2023

a: Sửa đề: ΔAEF vuông cân tại A

Xét ΔADF vuông tại D và ΔABE vuông tại B có

AD=AB

DF=BE

Do đó: ΔADF=ΔABE

=>AF=AE và \(\widehat{DAF}=\widehat{BAE}\)

mà \(\widehat{BAE}+\widehat{DAE}=90^0\)

nên \(\widehat{DAF}+\widehat{DAE}=90^0\)

=>\(\widehat{FAE}=90^0\)

Xét ΔAEF có \(\widehat{FAE}=90^0\) và AE=AF

nên ΔAEF vuông cân tại A

b: Gọi giao điểm của AH với EF là M

H đối xứng A qua EF

=>EF là đường trung trực của HA

=>EH=EA và FH=FA

mà AH=AE

nên EH=EA=FH=FA

Xét tứ giác AEHF có

AE=HE=HF=FA

nên AEHF là hình thoi

Hình thoi AEHF có \(\widehat{FAE}=90^0\)

nên AEHF là hình vuông