K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Hình vuông

Chứng minh các tam giác vuông ACB, IKA, IHM, MEB bằng nhau để suy ra AB = IA = IM = MB. Sau đó chứng minh \(\widehat{IAB}=90^0\)

26 tháng 11 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét ∆ CAB và  ∆ EMB, ta có:

CA = EM (gt)

∠ (ACB) = ∠ (MEB) = 90 0

CB = EB (tính chất hình vuông)

Suy ra:  ∆ CAB =  ∆ EMB (c.g.c)

⇒ AB = MB (1)

Ta có: AK = DK+ DA

CD = CA + AD

Mà CA = DK nên AK = CD

* Xét  ∆ CAB và  ∆ KIA, ta có:

CA = KI (vì cùng bằng DK)

∠ C =  ∠ K =  90 0

CB = AK (vì cùng bằng CD)

Suy ra:  ∆ CAB =  ∆ KIA (c.g.c)

⇒ AB = AI (2)

Ta có: DH = DK (vì KDHI là hình vuông)

Và EM = DK (gt)

Suy ra: DH = EM

⇒ DH + HE = HE + EM

Hay DE = HM

* Xét  ∆ HIM và  ∆ EMB, ta có: HI = EM (vì cũng bằng DK)

∠ H =  ∠ E =  90 0

HM = EB (vì cùng bằng DE)

Suy ra:  ∆ HIM =  ∆ EMB (c.g.c)

⇒ IM = MB (3)

Từ (1) , (2) và (3) suy ra: AB = BM = AI = IM

Tứ giác ABMI là hình thoi.

Mặt khác, ta có  ∆ ACB =  ∆ MEB (chứng minh trên)

⇒  ∠ (CBA) =  ∠ (EBM)

Mà  ∠ (CBA) +  ∠ (ABE) =  ∠ (CBE) = 90 0

Suy ra:  ∠ (EBM) +  ∠ (ABE) =  90 0  hay  ∠ (ABM) =  90 0

Vậy tứ giác ABMI là hình vuông.

15 tháng 7 2017

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADK ( c - g - c ) 

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

16 tháng 6 2018

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

a) Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADK ( c - g - c )

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án 

25 tháng 6 2017

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

a) Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADK ( c - g - c )

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án 

20 tháng 1 2018

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ Δ ABM = Δ ADK ( c - g - c )

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

28 tháng 2 2019

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Đặt BM = DK = x thì KN = x + DN, MC = a - x, CN = a - DN

Từ kết quả của hai tam giác bằng nhau ở câu a và giả thiết ta có:

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ Δ AMN = Δ AKN ( c - g - c )

⇒ MN = KN (cạnh tương ứng bằng nhau)

Khi đó, chu vi của tam giác MCN là

MC + CN + MN = a - x + a - DN + x + DN = 2a.

4 tháng 4 2018

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Đặt BM = DK = x thì KN = x + DN, MC = a - x, CN = a - DN

Từ kết quả của hai tam giác bằng nhau ở câu a và giả thiết ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ Δ AMN = Δ AKN ( c - g - c )

⇒ MN = KN (cạnh tương ứng bằng nhau)

Khi đó, chu vi của tam giác MCN là

MC + CN + MN = a - x + a - DN + x + DN = 2a.