Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét ∆ CAB và ∆ EMB, ta có:
CA = EM (gt)
∠ (ACB) = ∠ (MEB) = 90 0
CB = EB (tính chất hình vuông)
Suy ra: ∆ CAB = ∆ EMB (c.g.c)
⇒ AB = MB (1)
Ta có: AK = DK+ DA
CD = CA + AD
Mà CA = DK nên AK = CD
* Xét ∆ CAB và ∆ KIA, ta có:
CA = KI (vì cùng bằng DK)
∠ C = ∠ K = 90 0
CB = AK (vì cùng bằng CD)
Suy ra: ∆ CAB = ∆ KIA (c.g.c)
⇒ AB = AI (2)
Ta có: DH = DK (vì KDHI là hình vuông)
Và EM = DK (gt)
Suy ra: DH = EM
⇒ DH + HE = HE + EM
Hay DE = HM
* Xét ∆ HIM và ∆ EMB, ta có: HI = EM (vì cũng bằng DK)
∠ H = ∠ E = 90 0
HM = EB (vì cùng bằng DE)
Suy ra: ∆ HIM = ∆ EMB (c.g.c)
⇒ IM = MB (3)
Từ (1) , (2) và (3) suy ra: AB = BM = AI = IM
Tứ giác ABMI là hình thoi.
Mặt khác, ta có ∆ ACB = ∆ MEB (chứng minh trên)
⇒ ∠ (CBA) = ∠ (EBM)
Mà ∠ (CBA) + ∠ (ABE) = ∠ (CBE) = 90 0
Suy ra: ∠ (EBM) + ∠ (ABE) = 90 0 hay ∠ (ABM) = 90 0
Vậy tứ giác ABMI là hình vuông.
a) DDAE = DBAF (c.g.c)
⇒ D A E ^ = B A F ^ và AE = AF
Mà E A D ^ + E A B ^ = 90 0 = > E A B ^ + B A F ^ = 90 0
Þ DAEF vuông cân tại A.
b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);
Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.
c) Do K đối xứng với A qua I nên I là trung điểm của AK.
Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.
Vậy AFKE là hình vuông.
Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được
⇒ Δ ABM = Δ ADK ( c - g - c )
Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:
a) Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được
⇒ Δ ABM = Δ ADK ( c - g - c )
Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:
a) Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được
⇒ Δ ABM = Δ ADK ( c - g - c )
Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:
Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được
⇒ Δ ABM = Δ ADK ( c - g - c )
Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:
a: Sửa đề: ΔAEF vuông cân tại A
Xét ΔADF vuông tại D và ΔABE vuông tại B có
AD=AB
DF=BE
Do đó: ΔADF=ΔABE
=>AF=AE và \(\widehat{DAF}=\widehat{BAE}\)
mà \(\widehat{BAE}+\widehat{DAE}=90^0\)
nên \(\widehat{DAF}+\widehat{DAE}=90^0\)
=>\(\widehat{FAE}=90^0\)
Xét ΔAEF có \(\widehat{FAE}=90^0\) và AE=AF
nên ΔAEF vuông cân tại A
b: Gọi giao điểm của AH với EF là M
H đối xứng A qua EF
=>EF là đường trung trực của HA
=>EH=EA và FH=FA
mà AH=AE
nên EH=EA=FH=FA
Xét tứ giác AEHF có
AE=HE=HF=FA
nên AEHF là hình thoi
Hình thoi AEHF có \(\widehat{FAE}=90^0\)
nên AEHF là hình vuông
Chứng minh các tam giác vuông ACB, IKA, IHM, MEB bằng nhau để suy ra AB = IA = IM = MB. Sau đó chứng minh \(\widehat{IAB}=90^0\)