Chứng minh rằng đa thức
x3+5x2+2x+3 vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
x^2 + 2x +2016 = x^2 + x + x + 1 +2015
= x ( x+1 ) + 1 ( x + 1 ) +2015
= ( x + 1 ) ( x +1 ) + 2015
= ( x + 1 )^2 + 2015
Xét (x + 1 )^2 + 2015 = 0
=> ( x + 1 )^2 = - 2015 ( vô lí )
vì ( x + 1 )^2 luôn lớn hơn hoặc bằng 0 với mọi x
vậy đa thức trên vô nghiệm ( đúng ko các bạn )
Mọi người biết Trần Thu Hà như thế nào ko :cướp nick hu hu vừa mới cướp nick mình
nói tục tiểu
đi làm gian hồ
mình sẽ mét với online math luôn
Đặt đa thức đó là A
Ta có: \(A=2\left(x^2+x+\frac{3}{2}\right)=2\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)
\(A=2\left(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right)\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)
\(A\ge\frac{5}{2}>0\)
Vậy A vô nghiệm
2x^2>=0 voi moi x
2x >=0 với mọi x
3>0
Vậy đa thức trên vô nghiệm
2x2-2x+2=2(x2-x+1)
\(=2\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\right]=2\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=2\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(2\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=>đa thức vô nghiệm
Ta có: -2x^2+x-3=-x^2-x^2+x-1/4-11/4= -(x^2-x+1/4)-x^2-11/4= -(x-1/2)^2-x^2-11/4
Đa thức trên luôn bé hơn 0. Do đó đa thức trên ko có nghiệm
Ta có : -2x2+x >/ 0
=> -2x2+x-3 >/ -3 < 0
Vậy đa thức trên không có nghiệm (vô nghiệm)
Ta có :
2. x2 > 0 (1)
3 > 0 (2)
Từ (1) và (2) => 2x2 + 3 > 0
( Mà muốn được nghiệm thì 2x2 +3 = 0 )
=> 2x2 + 3 vô nghiệm ( điều phải chứng minh )
chúc bn hok tốt !!~
Vì 2x^2 > 0 với mọi x (1)
3 > 0 (2)
Từ (1) và (2) => 2x^2 +3 > 0 với mọi x
=> đa thức 2x^2+3 vô nghiệm
Vậy đa thức 2x^2 + 3 vô nghiệm
\(\text{a)}P\left(x\right)=2x^2+2x-6x^2+4x^3+2-x^3\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)=3-2x^4+3x+2x^4+3x^3-x\)
\(Q\left(x\right)=3x^3+2x+3\)
\(\text{b)}C\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)=3x^3\) \(2x+3\)
\(P\left(x\right)+Q\left(x\right)=6x^3-4x^2+4x+5\)
\(\Rightarrow C\left(x\right)=6x^3-4x^2+4x+5\)
\(\text{c)}D\left(x\right)=Q\left(x\right)-P\left(x\right)\)
\(Q\left(x\right)=3x^3\) \(2x+3\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)-P\left(x\right)=\) \(4x^2\) \(+1\)
\(\Rightarrow D\left(x\right)=4x^2+1\)
Để \(D\left(x\right)\)có nghiệm thì:
\(D\left(x\right)=0\)
\(\Rightarrow4x^2+1=0\)
Mà \(4x^2\ge0\)
\(\Rightarrow4x^2+1\ge1\)
\(\Rightarrow D\left(x\right)\ge1\)
\(\Rightarrow D\left(x\right)>0\)
Vậy đa thức \(D\left(x\right)\)vô nghiệm
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.