Cho tam giác AOB vuông tại O với đường cao OM (h.131). Hãy giải thích vì sao ta có đẳng thức :
AB . OM = AO .OB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có cách tính diện tích ΔAOB với đường cao OM và cạnh đáy AB:
Ta lại có cách tính diện tích ΔAOB vuông với hai cạnh góc vuông OA, OB là:
câu 2
Dựng AH là đường cao của ΔABC, khi đó ΔABM,ΔAMC chung chiều cao AH. Ta có:
SAMB=12BM.AH
SAMC=12CM.AH
mà BM=CMBM=CM (vì AM là đường trung tuyến)
Vậy SAMB=SAMC.
S là diện -.-
Áp dụng định lí Pytago vào ΔOBA vuông tại O, ta được:
\(AB^2=OA^2+OB^2\)
\(\Leftrightarrow AB^2=R^2+R^2=2R^2\)
hay \(AB=R\sqrt{2}\)
Ta có: ΔOBA vuông tại O
mà OM là đường trung tuyến ứng với cạnh huyền AB
nên \(OM=\dfrac{AB}{2}=\dfrac{R\sqrt{2}}{2}\)
\(a,\left\{{}\begin{matrix}OA=OB\\\widehat{AOD}=\widehat{BOD}\left(OD\text{ là p/g}\right)\\OD\text{ chung}\end{matrix}\right.\Rightarrow\Delta OAD=\Delta OBD\left(c.g.c\right)\\ b,\Delta OAD=\Delta OBD\Rightarrow\widehat{ODA}=\widehat{ODB}\\ \text{Mà }\widehat{ODB}+\widehat{ODA}=180^0\\ \Rightarrow\widehat{ODB}=\widehat{ODA}=90^0\\ \Rightarrow OD\bot AB\)
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: Gọi giao EO và BC là P
AE//BC
AE vuông góc OE
=>OE vuông góc BC
=>OP vuông góc BC
=>P là trung điểm của BC
AEPH là hình chữ nhật
=>AE=PH
EJ giao BC=J
=>AE=JC
=>JC=HP
=>HJ=PC=BC/2=MN
=>HMNJ là hình bình hành
=>HM//NJ và HM=NJ
=>HM//EN và HM=EN
=>EMHN là hbh
=>K là trung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
Ta có cách tính diện tích AOB với đường cao OM và cạnh đáy AB:
S = \(\dfrac{1}{2}\) OM. AB
Ta lại có cacnhs tính diện tích AOB vuông với hai cạnh góc vuông OA, OB là
S = \(\dfrac{1}{2}\) OA.OB
Suy ra AB. OM = OA. OB (2S).