cho \(\Delta\) ABC \(\perp\) tại A.AB=3;AC=4
a)tính BC
b)M là trung điểm BC kẻ BH\(\perp\)AM,CK\(\perp\)AM cm \(\Delta BHM=\Delta CKM\)
c) I là hình chiếu của H trên BC,so sánh IHvaf MK
d) so sánh BH+BK với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có
\(\widehat{DAH}\) chung
Do đó: ΔAHB\(\sim\)ΔADH(g-g)
a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)
\(BC=MH+HP=10\)
Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)
b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)
\(EF=EQ+QF=17\)
Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên BD=CE; AD=AE
Xét ΔBCD và ΔCBE có
BC chung
CD=BE
BD=CE
DO đó: ΔBCD=ΔCBE
c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có
BE=CD
\(\widehat{EBH}=\widehat{DCH}\)
Do đó: ΔBHE=ΔCHD
d: Ta có: ΔBHE=ΔCHD
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABD\) và \(ACD\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{A}\))
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABD=\Delta ACD.\)
=> \(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{ADC}=180^0\) (vì 2 góc kề bù).
Mà \(\widehat{ADB}=\widehat{ADC}\left(cmt\right)\)
=> \(2.\widehat{ADB}=180^0\)
=> \(\widehat{ADB}=180^0:2\)
=> \(\widehat{ADB}=90^0.\)
=> \(\widehat{ADB}=\widehat{ADC}=90^0\)
=> \(AD\perp BC.\)
c) Ta có \(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{A}\))
=> \(\widehat{NAD}=\widehat{MAD}.\)
Xét 2 \(\Delta\) vuông \(AND\) và \(AMD\) có:
\(\widehat{AND}=\widehat{AMD}=90^0\left(gt\right)\)
Cạnh AD chung
\(\widehat{NAD}=\widehat{MAD}\left(cmt\right)\)
=> \(\Delta AND=\Delta AMD\) (cạnh huyền - góc nhọn) (đpcm).
Chúc bạn học tốt!
A B C 3 4 M H K I
a) áp dụng định lí pitago
b) Xét tam giác bằng nhau theo trường hợp ch-gn
c) IH < MK do MK = MH . mà MH < IH ( quan hệ giữa cạnh và góc trong 1 tam giác )
d) BH + BK = BK + CK >BC ( BĐT tam giác )