Điền vào ô trống, biết a, b là độ dài các cạnh, d là độ dài đường chéo của một hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong hình chữ nhật ABCD ta luôn có
Do đó áp dụng định lý Py-ta-go ta có: d2 = a2 + b2.
Vậy :
- Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169 nên d = 13
- Cột thứ ba:
a2 + b2 = d2 ⇒ a2 = d2 – b2 = (√10)2 – (√6)2 = 4 nên a = 2
- Cột thứ tư:
a2 + b2 = d2 ⇒ b2 = d2 – a2 = 72 – (√13)2 = 36 nên b = 6.
Vậy ta có bảng sau:
a | 5 | 2 | √13 |
b | 12 | √6 | 6 |
d | 13 | √10 | 7 |
Độ dài đường chéo BD là:
40×35=24(cm)
Diện tích hình thoi ABCD là:
40×24:2=480( c m 2 )
Vì hình chữ nhật GHIK có diện tích bằng diện tích hình thoi ABCD nên diện tích hình chữ nhật GHIK là 480 c m 2 .
Chiều dài hình chữ nhật là:
480:15=32(cm)
Chu vi hình chữ nhật là:
(32+15)×2=94(cm)
Đáp số: 94cm.
Vậy đáp án đúng điền vào ô trống là 94.
Ta có: Bình phương độ dài đường chéo của một hình chữ nhật là: \({5^2} + {8^2} = 25 + 64 = 89\)
Độ dài đường chéo của một hình chữ nhật là: \(\sqrt {89} = 9,43398...\)(dm)
Làm tròn kết quả này đến hàng phần mười, ta được: 9,4 dm
Chú ý: Độ dài đường chéo của một hình chữ nhật bằng căn bậc hai số học của tổng các bình phương độ dài hai cạnh của nó
Độ dài đường chéo của hình chữ nhật là:
\(\sqrt{7^2+6^2}=\sqrt{49+36}=\sqrt{85}\simeq9,2\left(dm\right)\)
Diện tích hình thoi là: 48 × 27 : 2 = 648 ( c m 2 )
Diện tích hình chữ nhật là: 648 × 3 = 1944 ( c m 2 )
Chiều dài hình chữ nhật là: 1944 : 36 = 54 ( c m )
Chu vi hình chữ nhật là: ( 54 + 36 ) × 2 = 180 ( c m )
Đổi 180 c m = 1 , 8 m
Đáp số: 1,8m.
Vậy đáp án đúng điền vào ô trống là 1,8.
Bài giải:
Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169
Nên d = 13
Cột thứ ba:
a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2
a2 = 10 – 6 = 4 => a = 2
Cột thứ tư:
a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2
b2 = 49 – 13 = 36 => b = 6
Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169
Nên d = 13
Cột thứ ba:
a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2
a2 = 10 – 6 = 4 => a = 2
Cột thứ tư:
a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2
b2 = 49 – 13 = 36 => b = 6