Giúp em bài này vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (cmt).
+ \(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)
+ MB = NC (gt).
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).
Xét tam giác ABC có: AB = AC (cmt).
\(\Rightarrow\) Tam giác ABC cân tại A.
b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)
Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{}\) (đối đỉnh).
\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)
Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:
+ MB = NC (gt).
+ \(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)
\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).
c/ Tam giác MBH = Tam giác NCK (cmt).
\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).
Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).
\(\Rightarrow\) Tam giác OMN tại O.
a) \(A=x^4+4x+7=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)
\(minA=3\Leftrightarrow x=-2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxC=7\Leftrightarrow x=2\)
d) \(D=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxD=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
1. been
2. for
3. was
4. was
5. had
6. would
7. used
8. got
9. been
10. being/swimming
11. never
12. use
\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)
1 disability
2 opposition
3 nationalities
4 pride
5 professional
6 unemployed
7 Poverty
8 determination
9 belief
10 Attendance
11 educative
12 disabled
13 mentally
14 demonstration
15 visitors
16 activities
\(a,3x^2-4x-10=\left(8x^2-5x+6\right)-\left(5x^2+2x-3\right)\)
\(3x^2-4x-10=8x^2-5x+6-5x^2-2x+3\)
\(3x^2-4x-10=3x^2-7x+9\)
\(3x=19\)
\(x=\frac{19}{3}\left(TM\right)\)
\(b,2\left(x^2-x\right)+\left(6x^2-4x+8\right)=6x+8x^2-1\)
\(2x^2-2x+6x^2-4x+8=6x+8x^2-1\)
\(8x^2-6x+8=8x^2+6x-1\)
\(-12x=-9\)
\(x=\frac{3}{4}\left(TM\right)\)
\(e,\left(x+2021\right)^{x+9}=\left(x+2021\right)^{x+7}\)
\(\left(x+2021\right)^{x+9}:\left(x+2021\right)^{x+7}=1\)
\(\left(x+2021\right)^2=1\)
\(x=-2020\left(TM\right)\)
\(f,\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
\(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{2.3}\right|\ge0\\...\left|x+\frac{1}{99.100}\right|\ge0\end{cases}< =>\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge}0\)
\(< =>100x\ge0\)
\(x\ge0\)
\(< =>\left|x+\frac{1}{1.2}\right|=x+\frac{1}{1.2}\)
\(\left|x+\frac{1}{2.3}\right|=x+\frac{1}{2.3}\)... tương tự các cái còn lại
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
\(x+\frac{1}{1.2}+x+\frac{1}{2.3}+....+x+\frac{1}{99.100}=100x\)
\(99x+\left(1-\frac{1}{2}+\frac{1}{2}-..........+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(99x+\left(1-\frac{1}{100}\right)=100x\)
\(x=\frac{99}{100}\left(TM\right)\)