K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

cho tam giác abc vuông tại a biết ab=6cm,ac=8cm, a tính bc , b trên tia đối tia ac lấy điểm d sao cho ac=ad chứng minh tam giác bcd cân , c từ a vẽ ah vuông góc với bd tại h ak vuông góc bc tại k chứng minh tam giác bah= tam giác bka ,chứng minh tam giacs bhk cân từu đso chứng minh hk//cd , d qua điểm d kẻ đường thẳng a vuông góc vưới bd tại d qua điểm c kẻ đường thẳng b vuông góc với bc tại điểm c hai đường thẳng a và b cắt tại o chứng minh o,a,b thẳng hàng giúp mình với

 

19 tháng 5 2022

a,

Xét tứ giác MEFH, có :

\(\widehat{MEF}=\widehat{EHF}=\widehat{HFM}=90^o\)

=> tứ giác MEFH là hình chữ nhật

=> ME = FH

19 tháng 5 2022

a) ME⊥AC, FH⊥AC \(\Rightarrow\)ME//FH.

MF⊥BH, EH⊥BH \(\Rightarrow\)MF//EH.

△MEF và △HFE có: \(\widehat{MEF}=\widehat{HFE};\widehat{MFE}=\widehat{HEF};EF\) là cạnh chung.

\(\Rightarrow\)△MEF=△HFE (g-c-g).

\(\Rightarrow ME=FH\)

b) BH//ME \(\Rightarrow\widehat{FMB}=\widehat{ACB}=\widehat{DBM}\)

△DBM và △FMB có: \(\widehat{BDM}=\widehat{MFB};\widehat{DBM}=\widehat{FMB};BM\) là cạnh chung.

\(\Rightarrow\)△DBM=△FMB (ch-gn)

c) \(S_{ABM}+S_{ACN}=S_{ABC}\)

\(\Rightarrow\dfrac{1}{2}\left(MD.AB+ME.AC\right)=S_{ABC}\)

\(\Rightarrow\dfrac{1}{2}.AB\left(MD+ME\right)=S_{ABC}\)

-Do \(S_{ABC},AB\) ko đổi nên \(MD+ME\) cũng ko đổi.

d) BC cắt DK tại N.

Kẻ KG//AB (G thuộc BC).

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CGK}\\\widehat{ACB}=\widehat{KCG}\end{matrix}\right.\Rightarrow\widehat{CGK}=\widehat{KCG}\)

\(\Rightarrow\)△KCG cân tại K nên \(CK=GK=EH\)

Có: \(BD=MF\) (△DBM=△FMB) ; \(MF=HE\)(△MEF=△HFE)

\(\Rightarrow BD=EH=GK\).

△BDN và △GKN có: \(\widehat{BDN}=\widehat{GKN};\widehat{DBN}=\widehat{KGN};BD=GK\)

\(\Rightarrow\)△BDN=△GKN (g-c-g)

\(\Rightarrow DN=KN\) nên N là trung điểm DK.

\(\Rightarrowđpcm\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)

31 tháng 1 2018

Câu hỏi của Nguyễn Văn Hòa - Toán lớp 7 - Học toán với OnlineMath

E tham khảo tại đây, ta thấy ngay rằng MI + MJ + MK = AH (AH là chiều cao của tam giác)